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SUMMARY

During this research period, we concentrated our efforts in two areas. One was to continue our
previous investigation of coherent wave propagation in discrete random media. In addition to
providing a more rigorous model by considering nonspherical statistics for scatterers of arbitrary
shapes, we applied multiple scattering theory to study the frequency dependent effective properties
of different kinds of composites (electronic, elastic and acoustic). Such studies enable us to obtain
optimal designs of wave absorbing composite materials before conducting any expensive
experiment. For preliminary studies, an atmosphere containing aerosols can be modeled as a
composite; however, the particles are not stationary and the turbulence in the atmosphere does make
the problem even more complicated.

Secondly we began to investigate the incoherently scattered intensity as a result of the multiple
scattering of waves in discrete random media. Incoherent intensity becomes extremely important
when the magnitude of the second moment of the average wave field cannot be neglected.
Consequently, the incoherent intensity not only tells us more about the statistics of the discrete
random medium, but also it affects the qualities of the transmitted as well as the reflected signals.
Scattered intensities (coherent and incoherent) either from scatterers in a volume or from scatterers
on a surface (modeled as rough surface) were theoretically examined. The computed results for
backscattered intensity from scatterers compared favorably with those from recently observed
backscattering enhancement experiments.

In the following, we outline and summarize, based on the submitted and published papers in
either journals or conference proceedings, the work and the obtained results during this period and
also propose the tasks which should be pursued in the near future.

(a) We have demonstrated a scheme for computing the complex propagation characteristics of a
medium that is effectively anisotropic. For aligned nonspherical dielectric scatterers in free space,
there is a significant difference between the results ( for effective permittivity) for parallel and
perpendicular polarization of electromagnetic waves. However, the anisotropic effect for
spheroidal ice particles in air was not found to be significant when we varied the angle of incidence.
(b) We employed a more efficient scattering formalism using the scattered field, rather than an
earlier exciting field formalism which involves larger matrices. The new formalism is used to
compute the phase velocity and attenuation of composite media (circular as well as non-circular
scatterers of considerable concentrations) excited by either elastic SH or P and SVwaves. To
obtain the numerical results, the pair correlation function for "hard" disks using Monte Carlo
simulation was used.

(c) We applied multiple scattering theory to the design of microwave absorbing materials. The

scatterers considered were ferrite particles with high dielectric and magnetic loss tangents. Because
1
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the size of the ferrite particles is very small compared to the microwave wavelength, we derived an
analytical expression to obtain the complex propagation constant for the composite in the long
wavelength limit.The simple formula is able to predict the effective properties of electionic
composites in which both scatterers and host materials can be lossy. In the Rayleigh regime, the
derived formula covers the volume fraction of scatterers from 0 - 100%. In addition, the
characteristics of millimeter and microwave absorbing composites, consisting of piezoelectric or
chiral polymer particles, were also examined in wide frequency bands.

(d) Backscattered intensities were studied analytically for spherical scatterers randomly distributed
on a plane excited by either a normally incident plane wave or a beam wave. Under these
circumstances, waves are essentially multiply scattered by a random rough surface. The formalism
used to obtain the backscattered intensities was examined by using the principle of conservation of
energy and considering both the coherent and the incoherent intensities. However, current results
do not cover nonspherical scatterers and the dense concentration cases which should be pursued
further.

(e) Earlier results for electromagnetic wave propagation in discrete random media assumed
spherical statistics for describing the spatial distribution of even nonspherical scatterers. We used
the Monte Carlo method to generate the appropriate pair correlation functions for nonspherical

scatterers (at the present stage, prolate and oblate spheroids with different aspect ratios) which may

be either aligned or randomly oriented. The proper pair correlation function is then used to calculate
the propagation constants for waves traveling in a medium consisting of randomly and densely
distributed nonspherical scatterers. The propagation constant was later used to compute the
coherent and incoherent intensities. Considerable differences were found between the previous
results using various kinds of approximation for nonspherical statistics, and the current ones using
the Monte Carlo simulation.

(f) We developed a computational scheme to obtain numerical results for the second moment
(average intensity) of a wave field propagating in a medium consisting of randomly distributed
scatterers which are not necessarily simple in shape. The formalism (propagator model) used in our
compuatation parallels the diagram method first proposed by Feynman and clearly shows the

various approximations made in the intensity calculations. The back and forth scattering between a

pair of scatterers, which has been neglected in the ladder approximation, automatically appears in
our formalism taking into account all the multiple scattering between two scatterers through the pair
correlation function. The computed scattered intensities in the forward direction compared very well
with those measured from microwave experiments. The widths and magnitudes of the
backscattered intensity peak compared favorably with those of optical experiments.
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-7 ABSTRACT
~

In many applications involving electromagnetic waves, it is desirable to design materials having
prescribed frequency-dependent reflection and transmission characteristics; at the same time, they must
» conform o restrictions on weight, structural properties and geometry, etc. Composite materials that
contain a distribution of inclusions of specific concentration, distributional statistics, geometry and
material properties, can often achieve the desired absorption characteristics while adhering to other
R design restrictions. Because of economic and time constraints, the design of such composites must be
carried out theoretically. In this paper, the characteristics of millimeter and microwave absorbing

i composites, consisting of piezoelectric. ferrite or chiral polymer particles, are examined.

1. INTRODUCTION

Pt

To investigate the dynamic response of composite materials which are formed as a combination
of two discrete phases, i.e., the inclusion (scatterer) and the matrix (host) phases, requires the use of
the multiple scattering theory whenever the volume fraction of the inclusion phase becomes even
moderately large, which is usually the case for most commercial composites (e.g. carbon fiber or
. boron fiber composites used in aerospace industry). In this paper, because of the variety of inclusion
phases (piezoelectric inclusions are modeled as infinitely long cylinders which are two dimensional
scatterers while ferrite and chiral inclusions are treated as three dimensional spherical scatterers) as well

r

2 as the versatility of the exciting waves (elastic waves and electromagnetic waves which have

N cylindrical or spherical wavefronts), any effort in trying to formulate a unified algorithm which is
suitable for various systems seems to be awkward. However, a general multiple scattering formalism,

. without going into complicated details, is given also in this proceedings [Varadan et al., 1985¢] and

:_'n . can be used for a general reference. Nevertheless, the step-by- step derivations for any specific

Ay problem can be found in our previous work [Varadan er al., 1980, 1984, 1985a, 1985b, 1986).

% : 2. PIEZOELECTRIC MATERIALS

y

»

G Ever since the discovery of the piezoelectric effect by Pierre and Jacques Curie [Cady, 1946; Auld,
1973], materials possessing the relevant properties have been widely used in the fabrication of

v transducers, sensors, filters, resonators, etc. Piezoelectricity is the linear, reversible coupling between

the electromagnetic and the elastodynamic energies due to the displacement of charges. If a charge

- density is created over the surface of a piezoelectric material volume, then internal stress and strain are
produced; conversely, the application of mechanical pressure creates a change in the surface charge

. density, thereby launching an elecromagnetic field. Materials which are piezoelectric are either crystals

P endowed with anisotropy, or they are ceramics with ferroelectric properties which can susuin a
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Varadan, Varadan, Ma and Lakiuakia Pietoelectric, Ferrite and Chiral Polymer Composites

permanent charge poiarisation due to dielectric hysteresis. Single crystals are generally suitable for
very high frequencies, and, in quartz, elastic wave propagation has been observed at 125 GHz.
However, synthetic materials — principally, ferroceramics like uniaxial BaTiOy and lead zirconate
titanate (PZT) - have very strong electromagnetic-elastic coupling, and these new materials are
increasingly being put to use.

Constitutive relations for piezoelectric materials can be obtained by expressing the
-nermodynamic internal energy in terms of macroscopic state variables such as strain, electric and
magnetic fields. With the assumption that here the piezoelectric materials are non-magnetic, in mixed
dyadic/vector notation these relations take the form [Auld, 1973)

;l"‘*n.“l

.

e

Taee

T = -e-E+cE:S. (-1a)

D = cs--E + e85, (2-1b)

v

B - uo H, (2-1C)

where e is the third rank piezoelectric coupling tensor, ¢E s the fourth rank stiffness tensor at

constant electric field and €3 is the second rank permittivity tensor at constant strain and p, is the

permeability of free space. The elastodynamic field variables are u, the particle displacement, T, the

stress tensor, and S, the strain tensor, whereas E, H, and B are the usual electromagnetic field vectors.
In a piezoelectric material, therefore, both the Navier equation and the four Maxwell's equations

r}'_ Sy

SR
4

k3

VT = -polu, 22
VB = 0; VD =p,; VXE = joB; VxH = -juD, _ _ @Y

-

must be satisfied by the composite elastic-electromagnetic field subject to the constitutive equations (2-1).
R In (2-2), p is the mass density, whereas in (2-3), Pe is the volume charge density. Although (2-1) - (2-3) are
general, all further discussion in this section is specialized to a cartesian (xq+ X9, X3) co-ordinate system,
- with xq axis being the preferred direcdon.
The fourth rank tensor cE is called the stiffness tensor, all elements of which must be positive. Note
that not all of its elements are independent of each other, and it turns out that (with the superscript E
q omitted, henceforth)

Bibbatos oo e BB " 0”8 A B P Bl AT 4 T LT AR  MA - _ % _aesd & x_w -

Ciju - ckﬁj - jikl - cijlk' i'j,k,l- 1.2'3' (24)

further simplifications coming for transversely isotropic materials [Auld, 1973]. From thermodynamic
considerations it can also be shown that the piezoelectric coupling tensor e is symmetric. Further, since the
stress tensor is symmetric

Sijk = Cikj 2-5)

Confining the remaining part of this section (o transversely (x,-x4) isotropic media, it is convenient
to use an abbreviated index notation due to the particular symmetry o Cijkl- The upper case letters I, J,
etc., will be used to denote

- v
s y o l-'l. l.l
W - ~+ % 35Ty

ij

I
1 11
'~ 2 2
: 3 33
4 23,32
s 13,31
m 6 12,21
5.
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Thus, cyisa6x 6 symmetric matrix with only five independent elements for a material with transverse

isotropy, and is given by
€11 12 €13 0 0 0
Clz C" . Cls 0 0 0
‘u - | n °13 ¢33 0 0 0 @9
0 0 0 €44 0 0
0 0 0 0 C44 Y]
0 0 0 0 0 66

with cge = (cyp —©19¥2. Similarly the piezoelectric coupling tensor ¢ is written in the abbreviated
form as

CU - 0 0 0 els 0 0 (2'7)
31 &3 ¢33 0 0 °

which has three independent elements; and the permittivity tensor, after dropping the superscript S, as

g = |9 £y 0 29
0 0 C33

which has two independent elements,
In order to solve boundary value problems, the appropriate surface conditions on the particle

. velocity v = {J/dt}u, the traction force T+n, and the tangential electric and magnetic fields nxE and

nxH must be satisfied, » being the unit outward normal to the relevant interface. Reflection and
transmission characteristics of planar, piezoelectric half-spaces were probably first examined by Kyame
[1949; 1954}, and have been dealt at great length by Auld [1973]. Scattering of elastic and
electromagnetic waves by transversely isotropic cylinders have been investigated by Moon [1970],
whose analysis has been applied by Lakhtakia et al. [1986a] to study the properties of cylindrical
gratings made of BaTiO4 cylinders.

Table 2-1 Comparison of stiffened and unstiffened elastic constamnts of BaTiO4 and PZT-5

PZT-§ BaTiO,
¢ Unstiffened Suffened Unstiffened Stiffened
x 1019 N/m?) x10'0Nm?)  (x 1019 N/md) (x 1019 N/m?)

11 12.6 129 15.0 15.2
€12 7.95 8.27 6.6 6.77
o3 8.41 725 6.6 592
13 1.7 12.0 14.6 14.3
C4q 23 422 44 5.68
508
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Varadan, Varadan, Ma and Lakitakia Piezoelectric, Fervite and Chiral Polymer Composites

In many practical problems due to the enormous difference in the speed of propagation of acoustic
or elastic waves and electromagnetic waves, frequencies pertinent to the former ranging from a few
Hertz t0 100 MHz are very low with respect to electromagnetic waves. Noting that B and H do not
explicitly appear in the constitutive equations, it can be assumed that the electromagnetic field reduces
to a quasi-static electric field at frequencies less than about 100 MHz. [t is, nevertheless, important
that the distinction between static and quasi-static is retained. In the quasi-static approximation, one
may assume that the E field is irrotational, noting that it is strictly so in the electrostatic case.

Assuming that the electric field is irrotational, it is possible o write down

E = -VE§, (29a)
with § being a scalar potential. In which case, the magnetic displacement vectoe
B=~0, (2-9b)

by virtue of the fact that VxVE = 0. This implies an additional relationship between V& and S via
(2-1b), and it can be shown that

—¢1y {9¥/3x } =4 Sq, (2-10a)
€1 {99} = ¢4 S, (2-10b)
-t33 {8&/313} =e3; (Sl + Sz) +e33 S}. ] (2-10c)

Substitution of (2-10) in (2-1a) yields a stress-strain relationship for the transversely isotrppic,
piezoelectric medium which does not involve the electromagnetic field explicitly in the quasi-static
approximation. Indeed, then it becomes possible to state that .

T-e-V§+cE:S - ?:S. ' -11)

where the overbar above ¢& signifies piezoelectric stiffening, with its independent elements given by
€11 = gy + (eypTiey €33 = o33 + (e3p e @-12ab)
€z = €y + (e3egy €13 = C13 + &3 &3yt @12e.d)

844 - C4q + elszlz” . (2-12¢)

The stiffening can be considerable, especially in the coefficient €44 a8 Table 2-1 indicates for
BaTiO4 and PZT-S. In the quasi-static approximation, the appropriate surface conditions on the
particle velocity v = {d/dt}u, the traction force Ten, the potential & and its normal derivative 1 D73
maust be satisfied.

After the examination of the nature of piezoelectric materials, we are currently investigating the
damping characteristics as well as the phase velocity dispersion patterns of piezoelectric composites.

* In obuaining the numerical results, multiple scattering formalism has been employed in solving the
effective wavenumber X (= K +iK,) of the piezoelectric composites. The real part K; of K relates to
thephaevelocityandtheinginzypanl(,zisproponimaltomemuadonmewhichakocanbe .
converted to the physical dB scale if the sizes of the inclusions are given.

The piezoelectric composite considered in this paper is transversely isotropic piezoelectric
material with properties given in Table 2-2 and the matrix used is soft rubber whose properties are
also shown in the same table. Results presented in Figures 1 and 2 are for SH wave incidence. The
results from the corresponding problem but for P and SV wave incidence are presented in Figure 3 and
4. However, the properties for such a case are given in Table 2-3.
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Varadan, Yaradan, Ma and Lakiakia Pigroelectric, Ferrite and Chiral Polymer Composites

* Table 2-2 Material Properties for Piezoelectric Composites (SH Wave Incidence)

Case 1 Case 2
py (kg/m’) 6600 7000
p (kg/m°”) 1100 1000
c“FI(N/mz) . 85«x 109 85x 109
Cos (Nlmz) 7.0x 107 70x108
¢,5 (C/m?) 1.6 1.6
&, (F/m) 6eg 20¢e,

Table 2-3 Material Properties for Piezoelectric Composites (P and SV Wave Incidence)

. Matnix Inclusion

p (kg/m’ 1100 5700
11 (N 16.6 x 107
12 (N/m*) 5 7.66 x 10
ey (Coloumb/m“) 4.4
e(dielectric coanstant) [ € :
(33 2 '1‘50 to
Lame' Constants (N/m*) . :
Casel A 6.93 x 108

n 8.91 x 108 -
Case2 A 2.46 x 10°

B 6.19 x 105
Cased A 2.28 x 107

n 9.90 x 107
Cased A 2.45 x 107

n 1.10 x 107
€ = 8.854 x 102 Farsm B =4% x 107 Heary/m

3. FERRITES

In spite of the long history of the preparation of ferrite materials, one aspect of the microwave
characteristics of ferrites. has particurly aroused the interest of researchers in recent days, i.e., the
understanding of the mechanism by which electromagnetic energy is dissipated in ferrites. The
presence of a high dielectric constant as well as a magnetic loss tangent in a ferrite gives rise to high

. tlectromagnetic energy dissipation, which can be fruitfully utilized in the design of efficient
microwave absorbing composites.

In our previous work [Varadan ef al., 1985b), the attenuation of intensity in composite materials
along the wave propagation direction has been shown to be proportional to the imaginary part of the
effective wavenumber K. In other words, by appropriately tiloring the ferrite composites, which in
this study is through grounding the sintered ferrite in a ball mill, and then mixing with another
material and moulded, we are able to predict the dispersion characteristics of the new material. In
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general, the dispersion characteristics depend on the effective wavenumber K. Although the selection
of the matrix material is quite important, the critical parameter in the design of ferrite composites is
the inclusion material,

Generally speaking, the effective wavenumber K is determined through the T-matrix method
[Varadan & Varadan, 1980], in which a transfer function for studying the wave scattering as well as

. absorption characteristics of a single inclusion is considered. However, besides the response of 2
single inclusion, the low porosity of ferrite composites introduces ifteractions among inclusions
when excited by microwaves and multiple scattering effects have to be included in the analysis.
Current efforts are, therefore, directed toward the identification of several categories of ferrite
composites whose effective wavenumbers yield high damping coefficients in some specific microwave
bands.

Usually, the commercial ferrites with known dispersion curves are the first candidates for the
theoretical analysis. Any effort in the preparation of ferrite materials in improving the dispersion
patterns whose resonance phenomena highly enhance the attenuation of the composites is strongly
encouraged. In most cases, physical properties, in an effective manner, are able to be derived from the
effective wavenumber K of the composite materials. But unfortunately, only the effective quantity of
the product of e and y, i.e., <ej>, can be inferred from the effective wavenumber K of ferrite
composites. Although the permittivity of ferrites can be simply obtained using the Lorenz-Lorenz
formula (Frohlich, 1949), there is no direct formula, at least in the current literature, which can be

. employed to compute the permeability of ferrites. Therefore, the reason for not being able to derive an
exact formula for independent € and | is probably due to the complex dispersion pattern for the
permeability of ferrites. .

For magnetized ferrites, the electromagnetic energy can be dissipated due to resonance absorption
[Bloembergen, 1950]. One notices that when the signal frequency coincides with the natural
precession frequency, maximum energy dissipation occurs. In an infinite medium, the precession
frequency is determined by an applied sutic magnetic field; therefore, it is natural not to expect any
precession frequency, and, hence, any significant absorption of microwave energy in an actual sample.
However, it is worth noting that an effective field always exists within a sample of finite size due to
demagnetizing effects associated with sample or crystalline boundaries and due to crystalline
anisotropy.

The absorption mechanism inherited from the effective field, referred to as domain rotation
resonance [Polder & Smit, 1953], accounts for an absorption peak which occurs in unmagnetized
ferrites at low microwave frequencies (see Fig. 5). It may also account in part for an absorption peak
which appears at radio frequencies. However, experiments have shown that the radio frequency
magnetc loss in certain ferrite arises from the so called domain wall resonance {Rado et al., 1950]. In
Fig. 6, there are two pronounced dispersion regions for the solid ferrite. One occurs at low microwave
frequencies while the other at radio frequencies (the low microwave frequency dispersion region is
influenced by the domain rotation resona.se). In powdered ferrite, one notices that the low frequency
peak is completely absent and, since anisotropy would not be affected by powdering, the radio
frequency dispersion cannot be due to rotation resonance. Instead, it must therefore be due to domain
wall resonance. [n low porosity ferrites, domain walls are easily rapped and domain wall motion,
consequently, either prevented or restricted. Under these conditions, any resonance observed at low
frequencies is quite possibly due 10 domain rotation resonance in the anisotropy field.

The formalism used to obtain the effective wavenumber of a ferrite composite has been derived
{Varadan et al.. 1986). Because the size "a" of the ferrite inclusion is relatively much smaller than the
incident wavelength, i.e,, ka << 1, the long wavelength approximation can be made to simplify the
whole computation algorithm. For the convenience of the reader, we will briefly cite the final equation
which can be used right away in obtaining the effective wavenumber K.

. The normalized effective wavenumber f (= Ky/ky + jKy/k), according to our previous

-, investigation [Varadan et al., 1986] is given by
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N = 2{[(0-1-G;Lg)itv-Ly- L +ADwBAW-2weUBly, +2weBUVy V(044251 428)
+ i(v+2G,+28, +4BAw+4BDw4BwcUy )1} 2 G-

The normalization factor ks is the wavenumber in the matrix material. The parameters in Eq. (3-1) are
now defined as follows

a =2 - 42U -2y, vedQU o V-$Vyy,

Gy = By + Ay, 92"‘?"%"’1
=Cy+ Dy an 8y = c(A7-BMy|

g’-ﬁc-ﬂﬁ.v‘-ﬂéwo .

5. 2(By+A) B = 2(A¥B)

C=2ACyD) D« 2(Dy+C)

A = 108y )@y o1t Yoty g Vg o VA
B = [G3y™-Hy 2y + D+by g )2hy" 4y IV
C = [(e1"6; X2y v (8 ™0y )(28y" v DV
D = (6470285 ) (65002806 W ) )
S MO UMEC R &' @y vV 428y74¢))

7= %5 3%, 20103 3%, X)) ,

n- 13 X2 Xg X—z szz Yy= sz Wa (l-c)‘/(l+2c)2
B (X,>3%,%, %3 X, = Re(i) - Xy e Imlc)
e e S g =i o Ky = By iy

£y =iy ky = aligey) e :

Two kinds of ferrite materials, namely R-1 and R4, prepared by General Ceramics of Division of
Indiana General (Westphal et al.,; 1972] were used as inclusion materials in our numerical calculation.

" The dispersion patterns of R-1 and R4 are presented as Figures 7 and 8 respectively. The matrix

material was chosen to be PVC and the dielectric constant of PVC was taken to be €y = 22 and i1y =
Mg [t was assumed that both e, and py are nondispersive and lossless at the microwave frequencies,
Results for the imaginary part K, are presented, using the dB/mm scale, in Figs 9 and 10 for R-1 and
R-4 ferrites, respectively. In converting to the dB scale, the ferrite particle was assumed to be 0.4
micron in diameter in each instance. The peak of the attenuation of ferrite composites seems to appear,
for both cases, at the frequency having a minium value of the real permeability constant Wy and is
about 3 GHz. This fact has also been observed in our previous results [Varadan et al., 1986] for
magnetite Fe;0,4. Although there is no rigorous proof, it appears that this anti-resonsance behavior
may be the mechanism causing a high attenuation in ferrite composites. Besides the attenuation
pattern of ferrite composites, the phase velocity dispersion patterns are also presented for the R-1 and
R-4 ferrites in Figs 11 and 12, respectively.

4. CHIRAL MEDIA

The final class of materials to be discussed here are the chiral materials. The lack of geometric
symmetry between an object and its mirror image is referred to as chirality [Bohren, 1974), and the
mirror image of such a chiral object cannot be made to coincide with the object itself by any operation
involving rotations and/or translations. Chiral objects occur in nature, the readiest available example
being the two hands of the reader. The most commonly investigated chiral objects, however, are the L-
and the D-type stereo-isomers so familiar to students of organic chemistry. As a garden-variety
example, the doubly enantiomorphic sweetner Nutrasweet™, patented by G.D. Searie Company, can
occur in four different forms: of these, the taste of L-aspartyl-L-phenylamine methy) ester is sweet,
while that of D-aspartyl-D-phenylamine methyl ester is bitter; the isomers with the L-D or the D-L
configurations are tasteless (Goodman, 1985). The basis for the difference in the physical properties of
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) (v, kLz} Q =0 (V24321 Qg =0, 43a)
. VxQ k. v Ve QL =0, (4-3b)
. In these equations,
-
k =k/{1-kB}, (44a)
kg -k/(l +kB 1 (4-4b)
k= ol (44c)
< Thus, from (4-2) the electromagnetic field existing in the chiral medium is given by
s 12 ) s 12
. E-Q -jwey’*Qp i H=Qp-jm)'<QL. 4-5)
s
, The major consideration now to be faced is o find adequate representations of the functions Q
and Qp which satisfy the conditions (4-3). In a cartesian (x,y,2) co-ordinate system, if the RCP and
-. the LCP waves are propagating in the x-z plane, then, without loss of generality, these waves can be
o
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the mirror-conjugates lies in the handedness or the chirality possessed by their molecular
configurations. When an electromagnetic disturbance travels through a medium consisting of chiral
molecules, it is forced to adapt w the handedness of the molecules. In other words, linearly polarized
planewaves cannot be made W propagate through such a medium; whereas left- and right-circularly
polarized planewaves, travelling with different phase velocities, are perfectly acceptable solutions of
the vector wave equation for this class of media

Though the phenomenon of chirality is known only at the molecular level, md. therefore, at
frequencies in or above the ultraviolet range, it has been suggested [Jaggard et al., 1979; Engheta &
Mickelson, 1982] that particles endowed with chirality can exist at even lower frequencies, say, in the
GHz range. From recently reported literature, it appears that flucrogold may be exhibiting chirality at
a frequency as low as 50 GHz [Birch & Kong, 1986)]. This is because chirality, or handedness, is a
geometric property : for example, the electromagnetic response of a right-handed helix is different from
that of a left-handed one, and the existence of chiral particles made of miniature helices suspended in
some host medium has been investigated [Tinoco & Freeman, 1957]. Furthermore, by embedding
such chiral particles in a low-loss dielectric medium, that medium, too, will possess handedness. With
advances in polymer science, it is conceivable that such artificial media can be manufactured with ease,
and their properties tailored by altering the sizes and concentration of the embedded chiral particles.

Because of the fact that the chiral media exhibit circular dichroism [Bohren & Huffman, 1983],
the usual constitutive relations D = ¢E and B = pH do not hold due to their incompatibility with the
handedness of the medium. Instead, the relations (Eyring er al., 1944; Post, 1962]

D=eE+aeVxE , B=uH+fuVvVx H 4-1)

hold, the time-reversal symmetry of the fields requiring that a = B [Satten, 1958]. This latter condition
due to Satten will be adopted in the ensuing discussion.

Use is now made of the regular Maxwell's equations along with (4-1) along with an exp{-jwt)
time dependence , and following Bohren [1974), the electric and the magnetic fields are transformed ©

E 1 -igue)'? Q
- 42)
H -jewt? 1 QR

where the left- (LCP) and the right- (RCP) circulasly polarized fields, Q; and Qp, respectively, must
satisfy the conditions

.-

..‘h

o




[ ol

.

>
ce

,

"-
d

s

SN

R

RO

e
a s

Varadan, Varadan, Ma and Lakhiakia Piezoelectric, Ferrite and Chiral Polymer Composites

set down as (Lakhtakia et al., 1986b]
Q) = (Vi) (¢, £ kg ey - Xy &} explioe x e 0 2o 2=ty 2, (4-62)
Qgr(r) = ( l/kR) {- type, :ijey + “R‘z} expﬁ(xkx t ykz)); 7R2 + sz - kRZ. (4-6b)

e,, etc. being the unit vectors of the co-ordinate system. In a polar (p,@) co-ordinate system, these
fields can be conveniently expressed as

QLN =X, fy M &)+ Nk )i ne=0,%1,12, .. “7)

Qr(r) = X, gy Mp(kgr) - No(kpr)l; n=0,11,£2, .. (4-T0)
where,

M) = Vx {e, exp(jng] Z;(kp)); Ny(kr) = (1K) x M (ir); @7c)

f, and g, are the unknown coefficients of expansion; and Z,, is the cylindrical Bessel function of the
first kind if the field has to be regular at the origin, but it is the cylindrical Hankel function of the first
kind provided the field satisfies the Sommerfeld radiation conditions at infinity [Morse & Feshbach,
1953]. Finally, in spherical (r,0,9) co-ordinates, vector spherical harmonics [Stratton, 1941] can be
used as

QL) = Zymn Ty My P) + Ny (k)] N
QR = Zymmn & My (kg) - NyCkpe) : (4-85)

with v being a triple-index - @ is the parity index (even or odd). n goes from 1 o s», while m ranges
over 0 to n. The spherical harmonics are given as

Memn (k) = - {mz, (krysin8} P,™(cos6) sinme eg - 2, (ks){d/d6} P, (cas8) cosme ¢ (4-8¢c)
Momn(kr) = {mz, (krysin} P,™(cos6) cosmo eq - 2, (kr){d/d8}P,™(cosB) sinme L @438
N, (kr) = (16)V x M, (kr). (4-8¢)

In the foregoing expressions, z,, is the spherical Bessel function of the first kind if the field has to be
regular at the origin, but it is the spherical Hankel function of the first kind provided the field has to
obey the Sommerfeld radiation conditions at infinity; an are the associated Legendre polynomial,
while f,, and g,, are the unknown coefficients of expansion.

The reflection and refraction characteristics of planar achiral-chiral interfaces have been
extensively examined (Ramachandran & Ramaseshan, 1961; Lakhtakia er al., 1986b; Silverman,
1986], and it has been observed that by incorporating the chirality parameter f in an otherwise
low-loss dielectric medium, the absorption properties of a planar interface can be suitably altered,
regardless of the incident polarisation, and over a relatively large range of the angle of incidence
{Lakhtakia ef al., 1986b). Boundary value problems involving chiral spheces [(Bohren, 1974], spherical
shells (Bohren, 1975], and cylinders {Bohren, 1978) have also been recenty solved. Lakhtakia et al.
(1985] have applied the T-matrix method (Waterman, 1969] to solve for the scattering and absorption
characteristics of low-loss, dielectric, chiral spheroids.

Though the exact value of the chiral parameter B is not known for "chiral” media in the
microwave frequency range and must await experimentation (Lakhtakia et al., 1985; Silverman, 1986},
we have observed from numerical calculations that the specific value of  can change the scattering
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characteristics of a dielectric particle drastically. For instance, shown in Fig. 13 is the absorption

o cross-section Cy ¢ of a chiral sphere {e/eg = 5.0 + j0.1} ot‘radms a=02 mm, suspended in free space,

and irradiated by a linearly polarized planewave for § < 109m andf = 10 m over the S0 - 300 GHz
frequency range. To be noted is the fact that unless l(kL - kp)/kl > 0.1 inside the chiral scatterer, §
will not enhance either the absorption or the scattering cross-section significantly; if, however, B is

L large enough, then the scatterer can appreciably retard the progress of a linearly polarized planewave

even though it may not be very lossy itself. Furthermore, if € of the scatterer is purely real, no

’ enhancement in the absorption cross-section may be obtained simply by the incorporation of a
non-zero f.

) A chiral composite would consist of chiral inclusions dispersed in a non-chiral host medium, the
N small chira] inclusions themselves made up of microminiature helices suspended in some other, or the
same, host medium. As a2 wave traverses such a composite medium, it will be multiply scattered by
the inclusions. Besides actual absorption inside the chiral inclusions, scattering into other directions
- will also retard the progress of the wave in the forward direction. These considerations have been taken
b into account in the formulation of a self-consistent multiple scattering theory employed by our group.

Shown in Fig. 14 is the computed value of the attenuation /mag{K,¢p'kp oo} for a composite in
which the host is epoxy (e/e = 4.0], and the chiral inclusions [e/gq = 2.9 + jO. 9 B = 0.0003 m] are

spheres of radius a. These computations were performed at a normalized frequency of ky o2 = 0.026
i.‘.. for inclusion concentrations varying from § - 40%. As can be observed from the graph, the presence of

a non-zero B has gready enhanced the coherent attenuation inside the composite. From the sample
computations made, it is clear that while our assays of their utility are still in the preliminary stages,
the role of chiral media in electromagnetic applications holds vast promise and merits further
exploration. In particular, the typical values of § for chiral materials in the microwave frequency range
need to be determined by experimentation.
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= ABSTRACT

- We model the rough surface as scatterers of different sizes randomly distributed on an acoustically
~::. transparent plane. This problem has its application in studying the reflectivity of marine mineral

deposits. In fact, the roughness of the plane can be characterized by various size distributions of
scatterers. The T-matrix, which is essentially a scattering transfer function, enables us to acquire the
- acoustic signature of any arbitrary shaped single scatterer and is used to obtain the frequency spectrum
v of the reflectivity of an ensemble of those scatterers. In this paper, the backscattered response of a
random distribution of scatterers on a plane subjected to a normally incident, narrow beamform
. acoustic wave is investigated and the beam effect on the average backscattered field is found to be
K smalil and can be neglecied for further analysis of multiple scattering problems of rough surfaces.

1. INTRODUCTION

P Most investigators use plane wave excitation to analyze the scattering problem from a plane of
- : scatterers [Twersky, 1957, Biot, 1968; Hong, 1980; Ma et al.,, 1986]. The results yield a scattered
wave which is analogous to the reflection of a plane wave on a rough surface characterized by an
o~ equivalent reflection coefficient [Twersky, 1957]. In marine geophysics it is customary to use the ray
:: ¢ theory [Clay et al., 1977] together with the plane wave reflection coefficient to study the reflections at
T sea floor, i.e. rough subbottom. Therefore, the present study uses the normally incident plane wave as
this closely represents the equipment (see Fig. 1) used in the remote sensing. The narrow beam

. spherical wave (as an acoustic source) analysis is done here to indicate the accuracy of its usage and
D justify the plane wave analysis for the scattering problem. The normal incidence of a narrow beam is
- also used so that one can obtain a physical interpretation of the analysis without going into too much
complexity in mathematics. Typical echo sounders use beam widths of at least 60 degree for the

~. acoustic beam so as to accommodate the roll and pitch of the survey ship. However, in the deep sea
o sounding environment high intensity is required to overcome transmission losses occuring in the
B water column. In order to do this the narrow beam width is beneficial because it concentrates the
. acoustic energy into a smaller area on the bottom. Therefore in the market much smaller beams are

becoming common, with 6 degree being representative [Myers et al., 1969].

2. GAUSSIAN BEAMFORM ACOUSTIC WAVE

- The acoustic source which is located a distance H-above the bottom plane (see Fig. 2), radiates a
g spherically spreading pressure wave with a Gaussian beamform
N ¥;(R) = y . Rq expl- (ik + ) | R - z{ Jexp(- a82)/| R-z|. (1
v
LY
N
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Shallowly Towed
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Transducer /-{
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15,000f¢t.
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—

bottom

Figure 1  Proposed Prospecting System (Acoustic Sounding).
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in which y is the acoustical potential, z = (0,0,H), |1 the absorption coefficient in the fluid medium
(ocean), Ro the reference distance (usually one meter), 8 the beam width (in radian), 1/| R - z | the
spreading factor and a the Gaussian beamform coefficient defined as

a=ind/§p? @

where Syyp, the half power beam width, is shown in Fig. 3.
On the bottom plane, i.e. z = 0, at a distance rj from the beam axis the incident wave field
becomes

Wi(rj) = W,Rg expl- (ik + 1) D ] exp(- 052D, 6)

where D is the distance between the transducer and . The incident field at the image point, i.e. z = -H
orD=2H,is

Wiz = -H) = y,Rq expl- (ik + ) 2H J/2H. )
3. SCATTERED WAVE FIELD

A single scatterer located at r; on the bottom plane (z = 0) will radiate a spherically spreading
wave due to the excitation by the incident wave. Here we consider a planar distribution of scatterers
suspended in a fluid medium and this approximation based on the fact that the water-saturated
subbottom in which the scatterers are actually distributed has an acoustic impedance that closely
matches the acoustic impedance in water. The strength of the radiated wave depends on both the
external wave field and the scatterer’s characteristics which can be described by the T-matrix [Varadan
and Varadan, 1980). The backscattered field (Oj = 0) at z = H of the single scatterer at rj can thus be
defined as

“j(b..;.) = T-exp[-(ik + u)D]wi(rij =T Va Rg exp(-(ik +|:1)ZD] cxp(-aﬁz)lDz. ()

In which the subscript b.s. denotes the backscattering and T is the average T-matrix defined as

TR-r)) - ) Tia,, Rera(ad

and q(a) is the size distribution function. One sees from Eq. (5) that the spreading factor is now 1/D?
for the scauered field u; .y,  y.

If there is a sparsé distribution of scatterers on the surface, the total backscattered field is simply

the sum of the fields scattered from each scatterer. In other words, the external field of each scatterer is -
due to the incident wave alone and is the first order approximation of the multiple scattering processes.

The average total backscattered field can be found as
<Uy ¢ > = PTRGY, [g expl-(ik +1)2D] exp(-08;2yD%2mridr, ®)
where the axial symmetry and the polar integration for a large area
n

have been employed and p is the number of scatterers per unit area. From the symmetry (Fig. 2) one
sees

lanSJ-rJ/H
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. D2-H2+rj2.
~

Using the above relationships and changing the integration variable by (instead of T integration, J;
integration is used)

2 . / H) = H2tans; 45
rydr; = H2 (5 H) d(r; / H) = H1and; sec?8,d5;

in Eq. (6), the average of the total backscattered field becomes

N <Ups>=2m Ty, Ry foz" expl-2(ik + w)H sec 8j exp(-aﬁjz)msjd&J. )

) The integral in the above equation can be done using the principle of stationary phase [Lamb,
g 1932]. The magnitude of kH is always much larger than that of 05° (see Table 1 for comparison). For
s kH >> 1, which is a phase control factor, the integral can be converted to the following form

2%
. fy expl-iHg(8)) an; a5, ®)

in which g(5)) = (2 +2u/ik)sec §; + o Z/ikH.
The phase angle v is obtained by solving the Sj which makes

o g(5;) = (2 + 2ik) sec §; an; + a5 %/ikh = 0
e and is found to be zero, i.e. y = 0, in this case (in the interval of 0 and 2x). The second derivative of
g(5j) evaluated at the phase angle y = 0 is
£"(0) = 2 + 2wik + 2a/ikH
.. Using the stationary phase principle, Eq.(8) can be written in the following manner
' I . sto expl-ikHg ()¢ 2r21d; : : - ‘ ©

in which § is the parameter in the Taylor expansion around the phase angle ¥, i.e.
8(8) = 207+ 0) = 8N + ENG + 8"(WET2! + ...
ﬂ “’"sj"‘“(‘f+§)-!2n‘1+seczy§+...
-

Substituting ¥ = 0 and the expression for g(Y) and g"(y) into Eq. (9) one obtains

< exp [-ik(1 + wik)2H] o expl-ikH(1 +p/ik +ovikH)(2IGdL. (10)
~ Finally after substituting Eq. (10) into (9) and carrying out the integral in (10) the average of the total
backscattered field becomes
L
~ <Uy g > =(2r pT/k)(1 + ovikH + wik)™! (Roexp(-(ik + p)2H]y/2H). (1
. One sees from the above equation that the last term is actually the incident field at the image
o point, i.e. z = -H, comparing with Eq. (3). The beam effect which involves in the second term o/ikH
W, can be evaluated. As can be seen from Table 2 at large depth, unless a very narrow beam width under
the low frequency is used, the beam effect on the average backscattered field is very small and can be
neglected for further analysis of multiple scattering problems. The first term is thus recognized as an
equivalent plane wave reflection coefficient which relates the average backscattered field to the incident
699
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D ! wave field by just a simple proportionality. This is physically the phenomenon of the plane wave
. excitation and thus the validity of the plane wave analysis for rough surface scattering problems has

JNED

been verified through the narrow beam investigation.

Table 1 Comparison between the Magnitudes of kH and 52

P4

\ ! Frequency kH Sup ab
1S 1 kHz 20943 2 degree 2807

10 kHz 209430 4 degree 701
- 100 kHz 2094300 6 degres 312
~ "A\
: b H = 5000 m, acoustic wave velocity = 1500 m/sec, § = 90 degree
SN

. Table 2 Beam Width Correction Factor (kH)

NS Half Power Beam Width 3yyp
- 'r.l:' Frequency 1 degree 5 degree 10 degre
+
- 1 kHz 0.22 0.0087 0.0022
N 10 kHz 0.022 ) 0.00087 0.00022
:‘ N 100 kHez 0.0022 0.000087 0.000022 -
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MULTIPLE SCATTERING THEORY FOR ACOUSTIC,
ELECTROMAGNETIC AND ELASTIC WAVES IN
DISCRETE RANDOM MEDIA

V.V.VARADAN, V. K. VARADAN AND Y. MA
Department of Engineering Science and Mechanics and
Center for the Engineering of Electronic and Acoustic Materials
he Pennsylvania State University Park
University Park, PA 16802

ABSTRACT

A multiple scattering theory is presented using a T- matrix 1o characierize the response of a
single inclusion to an arbitrary incident field. The multiple scattering series can be represented in
diagrammatic form. A partial resummation of the series is equivalent to the Quasi-Crystalline
Approximation (QCA). This results in a new Green'’s function or propagator for the effective medium
whose singularities or poles are given by the zeroes of the dispersion equation satisfied by the coherent
field. The QCA requires a knowledge of the two particle pair correlation function and this is included
explicitly so that volume fractions of scatterers greater than 5% can be considered. Since all fields are
generally expanded in vector spherical functions, keeping functions of the appropriate polarization one
can directly use this formalism for acoustic, electromagnetic and elastic waves by using the T- matrix
that is appropriate for the particular boundary value problem for the single scatterer. Excellent
agreement with experimental results has been obtained for all three fields. Recent work using
non-spherical staiistics resulting from Monte Carlo simulation for a distribution of spheroids has also
been implemented in evaluating the effective wavenumber for media containing dense distributions of
spheroids which was rot possible before.

1. INTRODUCTION

The average or effective properties of a random medium containing inclusions of one material or
voids distributed in some fashion in a second material called the host or matrix material can be
conveniendy studied by analyzing the propagation of plane waves in such materials and solving the
resulting dispersion equations. Since waves propagating in such a two phase system will undergo
multiple interactions with the scatterer phase, it becomes natural to consider multiple scattering theory
and ensemble averaging techniques if the distribution of the inclusion phase is random. Ia this paper, a
multiple scattering theory is presented that utilizes a T-matrix to describe the response of each scatterer
to an incident field. The T-matrix is simply a representation of the Green's function for a single
scatterer in a basis of spherical or cylindrical functions. In this definition, it simply relates the
expansion coefficients of the field that is incident on or excites a scatterer to the expansion coefficients
of the field scattered when both fields are expanded in the same spherical wave basis [1]. In theory, the
T-matrix is infinite, but in practice the T-matrix is truncated at some size that depends on the ratio of
size of scatterer to the wavelength and the complexity of the geometry, Formally the T-matnix
includes a multipole description of the field scattered by the inclusion and this requires a propagator for
mulupole fields to describe the propagation from one scatterer to the next. Finally, the technique
presented here is for a random distribution of scatterers which requires an ensemble average over the
position of the scatterers and requires a knowledge of the positional correlation functions.

The formalism presented is generally applicable o acoustic, electromagnetic, and elasuc waves.

-
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The notation ¢, = ¢, is used to represent the vector spherical functions. The polarization index
© = 1,2,3 denotes the irrotational component and the two solenoidal components respectively. The
other indices describe the multipole nature of the fields, with /= 0,1,2...; m=0,1,2, .../ ;and &
denotes the even or odd azimuthal parity in spherical coordinates. The acoustic field being completely
irrotational will be described by T =1 only, the elctromagnetic field by t = 2,3 and the elastodynamic
field by t = 1,2,3. The procedure for computing the T-matrix for each field has been described in
several publications, in particular we refer the interested reader to Varadan and Varadan [2]. In the
multiple scattering formalism that is presented below, if proper identification of the polarization index
is made and the appropriate T- matrix substituted, all three types of wave propagation problems can
be studied. .

Good agreement has been obtained with available experimental results for all three types of waves
for a wide range of wavelengths, scatterer concentration and properties {3,4,5]. The theory presented
here most closely resembles the work of Twersky [6,7) and Tsang and Kong [8]. The infinite hierarchy
of equations that results in a multiple scattering formalism when the exciting filed is averaged has
usually been truncated by using the Quasi-Crystalline Approximation first proposed by Lax [9]. In
this approximation, which is shown to be completely equivalent to a partial resummation of the
multiple scattering series, only a knowledge of the two body correlation function is required. In
previous studies {10,11], we relied on spherical statistics for hard spheres, generated by Monte Carlo
simulation or by the Percus—Yevick approximation even for non-spherical scatterers. Essentially, this
increased the exclusion volume surrounding the non-spherical scatterer, and artificially restricted us to
smaller concentrations in order to prevent the statistical spheres from overlapping. In the present
s:udy, these restrictions are removed by using a new Monte Carlo simulation developed by Steele [12]
for non-spherical scatterers, that is based on expanding the two body correlation functions in Legendre
polynomials. This permits us to consider the angular correlations that exist for non-spherical oriented
scatterers. The final equation for the formalism is the dispersion equation which describes the
propagation characteristics of the coherent or average filed in the effective medium. The numerical
solution of this equation yields the effective complex, frequency dependent propagation number which
is also a function ‘of the size, geometry and distribution of the inclusion phase. The effective
wavenumber is a function of the direction of propagation in the effective medium if the medium is
effectively anisotropic. If, for example the scatterers are spheres or if the non-spherical scatterers are
randomly oriented, the effective medium will be isotropic, but if the medium contains aligned
non-spherical scattgrers the effective medium will be anisotropic. The effective wavenumber can be
related to the effective material properties of the medium which are also complex and frequency
dependent. For anisotropic materials, by solving the dispersion equation for different directions of
propagation with respect to the aligned non-spherical scatterers, we can construct all components of
the material property tensors of the effective medium such as the elastic stiffness tensor or the
dielectric tensor, see [13].

Numerical results for aligned and randomly oriented oblate and prolate spheroids using the new
correlation functions have been obtained and compared with previous calculations for spheroids that
used spherical statistics. We forsee important applications of these new results to electromagnetic
wave propagation through aerosols, which are non-spherical and often consist of aggregates and also in
other cases where non-spherical scatterers are involved.

2. EFFECTIVE WAVENUMBER FOR THE AVERAGE FIELD IN A
DISCRETE RANDOM MEDIUM

Let the random medium contain N scatterers in a volume V such that N — oo, V 3 oo, but ng =
N/V the number density of scauerers is finite. Let u, u°, u®,, usi be respectively the total field, the
incident or pnmary piane, harmonic wave of frequency w, the field incident or exciting the i-th
scatterer and the field which is in turn scattered by the i-th scatterer. These fields are defined at a point
r which 1s not occupied by any one of the scatterers. In general, these fields or potentials which can
be used to describe them sausfy the scalar or vector wave equation. Let Re ¢, and Ou ¢, denote the
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basis of orthogonal functions which are eigenfunctions of the Helmholtz equation, see Morse and
Feshbach [14]. As explained in the introduction the subscript ‘n’ is an abbreviated superindex and
vector notation is implied. The qualifiers Re and Qu denote functions which are regular at the origin
(Bessel functions) and outgoing at infinity (Hankel functions) which are respectively appropriate for
expanding the field which is incident on a scatterer and that which it scatters. Thus, we can write the
following set of self-consistent equations:

u - u° +l§u o e’ 0 *%i u’j ¥, 4]
i
Or) = pexp(ikkyr) = I a; Red (r-rp) , )
u’ - Zna;Re¢n(r—ri);a<|r—ri|<23 , A3)
1 .
uz =- an;Ouon(r-ri). |r—-ri|>a ; @)

where a:‘ and frlx are unknown expansion coefficients. We observe in Eqs.(3) and (4) that "a" is the
radius of the sphere or cylinger (for 2-D problems) circumscribing the scatterer and that all expansions
are with respect o a coordinate origin located in a particular scatterer.

The T-matrix by definition simply relates the expansion coefficients of u; and u® ; provided u
+ u%; is the total field which is consistent with the-definitions in Eq. (1). Thus (1],

f e E Tk L )

and the following addition theorem fos the basis functions is invoked,
Oudq(r-r) = Ly Opp(ri-rpRedy(r-r) . ®
Substituting Egs. (2) - (6) in Eq. (1), and using the orthogonality of the basis functions we obtain

o - al +1£cr(r—r)T“<xJ . M
j#i

This is a set of coupled algebraic equations for the exciting field coefficients which can be iterated
and leads to a multiple scattering series.
For randomly distributed scatterers, an ensemble average can be performed on Eq. (7) leading to
i

<al>; - al +<a(r—r)TJ<aJ>

where < > . denotes a conditional average and Eq. (8) is an infinite hierarchy involving higher and
higher coanuonal expectations of the exciting field coefficients. In actual engineering applications, a
knowledge of higher order correlation functions is difficult to obtain, usually the hierarchy 1s truncated
5o that at most only the two body positional correlation function is required.

To achieve this simplification the Quasi-Crystalline Approximation (QCA), first introduced by
Lax [9] is invoked, which is stated as

<c¢J>lJ = <Clj>j . )

Then, Eq. (8) simplifies to
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<ui>i T - ai + <0 ("i - rj) Tj<aj>j>i H (10)
an integral equation for <ai>i which in principle can be solved. We observe that the ensemble
average in Eq. (10) only requires P(r;lr;), the joint probability distribution function. In panif:ular,
the homogeneous solution of Eq. (10) leads to a dispersion equation for the ¢ffective medium in the
quasi-crystalline approximation. Defining the spatial Fourier transform of <a‘>i as

<al>; ~ &K clk) ak an

and substituting in Eq. (10), we obtain for the homogeneous solution

Cl(K) = I Jot-r) Prrjiry e KCi-Tar, dik) . (12)
j=i

If the scatterers are identical
ci(k) - Ci(K) = C(K) ‘ (13)
and thus for a non-trivial solution to <ai>i, we require

M-l ow-rT P KCi=rar | <0 (14)
J#i

In Eqs. (12) and (14), P(rjlri) is the joint probability distribution function. * For isotropic
statistics,

P(rj(ri) .- O;Kr-,—rj|<2a .
g(Iri-rj])/V;|ri-rj|>23 , (15)

where we have assumed that the scatterers are impenetrable with a minimum separation between the
centers being the diameter 2a of the circumscribing sphere in 3-D and circle in 2-D. Equation (14) can
hence be simplified to

lI-nOIG(rl—rQ)Tg(lrl-rzl)eiK'("l'r‘.’)drl =0 (16)

where (1/V) Z':i = (N-1YV = n,. The integral in Eq. (16) is simply the spatial Fourier transform of
oTg. The zerdes of the determinant as expressed by Eq. (16), yield the allowed values of K as a
function of the microstructure as determined by the T-matrix, the number density n, and the statistics
of the distribution as determined by the pair correlation function. In general X, the effective
wavenumber is complex and frequency dependent.

In order to perform the integration in Eq: (16), we need a model for the pair correlation function.
For non-spherical scatterers, the pair correlation function depends not only on the length of the vector
connecting the centers of the scatterers, but also on the direction of this vector and the orientation of
each scatterer. If the scatterers are spherical, then there is no dependence on direction #nd orientation
and the statistics are said to be spherical or isotropic. In both cases, the scatterers are not allowed to
overlap, i.e. an infinite repulsive potential is assumed between scatterers. In the statistical mechanics
literature, several schemes are available for calculating the pair correlation function of ' hard * particles.
For spherical hard particles, analytical results can be obtained for sparse concentrations in the form of
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a density expansion or virial series, and for higher concentrations the Percus-Yevick, the
self-consistent approximation, and Monte Carlo simulations have all been used for distributions of
spheres, see [10,11]. If spherical statistics are used, then the so called 'hole correction integral’ on the
excluded surface can be done analytically, resulting in a matrix that is diagonal. This simplifies some
portions of the calculation considerably. Results, explicitly for non-spherical scatterers are not readily
available, and in previous calculations, we artificially surrounded the non-spherical scatterer by a
transparent sphere that enclosed it, or considered a sphere of equivalent volume. In the first
approximation, the non-overlap of the statistical spheres severely limited the concentrations that we
could consider, and the second approximation, although better than the first did not lead to satisfactory
results at volume fractions exceeding 10%.

It is interesting to examine what type of multiple scattering terms contnbutc to the
quasi-crystalline approximation. If Eq. (8) is iterated, we obtain

¢ <Ly T < TS > an

here the abbreviation 6V = & (r;-r;) has been used, and matrix multiplication is implied throughout.
We recall thato and T are suxtably truncated matrices and o and a are suitably truncated vectors.
Suppose the QCA is invoked for each term in Eq. (17), i.e.

<oj"Tka‘_‘>ij = <ok Tk ak>j ) . (18)

Then we note that only two body correlations are required and the multiple scattering series in Eq. (17
can be easily summed by spatial Fourier transform techniques using the convolution theorem.
Symbolically, the multiple scattering series in Eq. (17) may be represented as )

<ai>- - ai_ +‘—mk*' + ‘—“_'kl - I.‘_ .+ an
J . :

: j i

where o—e denotes gy M denotes p(r Irk) 0 denotes T and e denotes ak. Eq.(17)
or its alternate form(l7j) can be summed ancf wmten as k

<ai> - [[1-ny] o Tem e KX ax ]l expiKerp af dK . (19)

In Eq. (19), the matrix inverse is the spatial Fourier transform of the Green's function or
propagator for the effective medium in the QCA as given in Eq. (18). The dispersion equation for the
medium is given by the zeroes of the spatial Fourier transform of the Green's function. Thus, the
dispersion equation resulting from Eq. (19) is identical to the one obtained from Eq. (15).

The dispersion equation as given in Eq. (16) is very well suited for computation. Using
appropriate forms of the basis functions ¢, which are solutions of the field equations, the T-matrix of
the single scatterer can be computed; for example, see Varadan and Varadan [2). The translation matrix
¢, although complicated in form for cylindrical and spherical functions, can nevertheless be computed
in a straight forward manner. The spatial Fourier transform of o T g is fairly easy to compute because
the integrand is well behaved for large values of the interparticle distance. In the results presented for
different types of wavefields, tabulated Monte Carlo values for impenetrable spheres [15) were
substituted for g at various concentrations. The roots of the resulting determinant were found using
Muller's method by giving initial guesses using the analytic expressions for K which can be obtained
from Eq. (15) in the long wavelength limit. The real and imaginary parts of the effective wavenumber
can be related respectively to the phase velocity and attenuation in the effective medium. The
attenuation is due to geometric dispersion or scattering which may be further enhanced if there are
losses associated with the material properties of the scatterer and/or the host.

945




he f'e Ale Sia B e B ad e h BLA" Al S0 Sl I ok Iail ol ot -

-
B
b
'- Varadan, Varadan and Ma Multiple Scattering Theory for Acoustic . . .
g In recent years, considerable progress has been made in Monte Carlo simulation to describe the

statistics for non-spherical hard ( impenetrable ) particles by Steele {12]. He has expanded the joint
< probability functions in a series of spherical harmonics and radial functions with unknown
(S coefficients. The coefficients are evaluated directly in the Monte Carlo simulation. For aligned prolate
- and oblate spheroids, these results have just become available. The excluded volume for these
geometries is also spheroidal. The hole correction integral can only be done numerically, and the
- resulting matrix is no longer diagonal. This has been implemented in calculations of the effective
i wavenumber in media containing random distributions of aligned spheroidal particles [19]. It can be
seen that correct statistics conforming to the shape of the particle is needed to get correct results at
volume fractions exceeding 5%.

. ‘ 3. NUMERICAL RESULTS

In this paper we have given a general formalism to describe multiple scattering of waves in a
. discrete random medium, which leads to a dispersion equation that is numerically tractable for
acoustic, electromagnetic and elastic waves, Here we simply refer the reader to several papers that
already contain numerical results for the phase velocity ( real part of the effective wavenumber) and
attenuation ( imaginary part of the effective wavenumber ). The attenuation of the coherent filed in the
e random medium may be due to real losses associated with the lossy properties if any of the scatterers
- but is also due to geometric dispersion or multiple scattering. Thus a composite material is effectively
lossy even if the constituent phases are non-lossy. The numerical results that have been published are
. for spherical and spheroidal particles that are randomly distributed at volume fractions in the range of 0
"~ ) - 45% whose sizes are comparable to the wavelength of the propagating wave. The spheroidal
scatterers can be aligned [16], or randomly oriented [17]. At the volume fractions considered, multiple
scattering and the effects of statistical correlations cannot be ignored and were crucial in the excellent
agreement we-obtained with experimental results, for acoustic waves see [18), for -lectromagnetic
[" waves, see [3], and for elastic waves see [5]. ’

(a) ! . - [ l n .I

. The scatterers in this case can be penetrable elastic solid or fluid particles, acoustically hard or

’ acoustically soft spheres. The adiabatic compressibility of the effective medium can be obtained from
the definition
. Kz(m) <> <p>

- - (20)
- k2 Xo P
where k is the wavenumber in the host medium, <p> = (1 -c¢) Po + C Pg. the average mass
R density, p,, and ps being the density of the host and scatterer materials, X is the adiabatic

compressibility of the host material, <x> is the effective compressibility of the composite fluid and ¢
the volume fraction of scatterers. For the case of a random distribution of bubbles in water, excellent

1~ agreement has been obtained with the experimental results of Silberman [18) (see Figure 1). The
"oy calculations reproduce the long wavelength bubble resonances that result in an anomalous dispersion
b of the phase velocity and a peak in the attenuation as a function of frequency.

';.: ®

A In a fiber reinforced composite, for P - (longitudinal), SV - (transversely polarized shear wave)

and SH - (shear waves polarized parallel to the fibers) wave propagation, if the fibers are circular and
parallelly-oriented, the effective medium is transversely isotropic and will be characterized by five
elastic constants. By calculating Kp. K,y and K}, three of the five elastic constants can be found as
- a function of frequency, fiber geometry and concentration. If wave propagation along the fibers is
considered, then the remaining constants can also be found. In the long wavelength limit analytical
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Figure 3 Comparison between theory and expenmem phase velocity versus frequency for Jead
spheres ‘in Epon 828-Z (Ref. [5]).
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Figure 4 (a) Coherent attenuation versus concentration for latex spheres in water for ka < 1
(Ref. [3}).

(b) Coherent attenuation versus cancentration for latex spheres in water for ka > |
(Ref. [3]).
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Figure 5 (a) Phase velocity versus concentration ¢ for Revacryl dispersions in distilled water at
wavelength = 546 nm (Ref. [4]).
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Figure 5 (b) Coherent attenuation versus concentration ¢ for Revacryl dispersions in distilled
water at wavelength = 410 and 546 nm (Ref. [4]).
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shown in Figure 2 are calculated effective shear moduli for boron fiber reinforced aluminum
composites.

(c)

For spherical particles randomly distributed in a host material, the composite material is
effectively isotropic and hence characterized by two effective elastic constants which can be obtained
by solving the dispersion equations for K, and K, see {5,20). Here again for particulate composites,
we have obtained excellent agreement with the experimental results of Kinra who measured the phase
velocity as a function of frequency for a distribution of lead spheres in epoxy [5] (see Figure 3).

(d)

For a random distribution of dielectric or metal spheres distributed in a dielectric host material,
the medium is effectively isotropic and characterized by juit one dielectric function which can be
obtained from the effective wavenumber K via <¢> = £ _<K>“/ k<, where £, is the dielectric function
of the host material, see [16]. For a dense distribytion o?polystyrene spheres in air again we obtained
excellent agreement with the experimental results of Ishimaru [3] (see Figure 4). For optical
experiments, our theoretical results compared extremely well with those obtained by Killey and
Meeten [4] (see Figure 5). )
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Anisotropic Dielectric Properties of Media Containing
Aligned Nonspherical Scatterers

VASUNDARA V. VARADAN, MEMBER, IEEE, Y. MA, AND
VUAY K. VARADAN, MEMBER, 1EEE

Abstract—Electromagnetic wave propagation in 8 medium coantsiniog &
random distribution of aligned, pair-correlated monsphericsl scaiterers is
studied using the 7-matrix to characterize the siugle scatterer response, the
quasicrystalline approximation (QCA) and the correlation function. The
resulting dispersion equation for the average medinm is numerically solved
a3 a function of frequency and the direction of propagation. Numerical
results are pr J for the tion of electromagnetic waves versus
frequency, concentration, snd direction of propagsatioa.

INTRODUCTION

It is well-known that in a medium with microstructure in the
form of discrete-random inhomogeneities, electromagnetic waves
undergo attenuation as well as dispersion. If the inhomogeneities
are either spherically symmetric or randomly oriented, the
medium is macroscopically or on the average isotropic. The
attenuation and phase velocity are independent of the direction
of propagation. However, the medium can be effectively aniso-
tropic if the scatterers are nonspherical and aligned. In this case
the propagation characteristics of the medium are a function of
the angle with respect to the axis of alignment (taken as the z-
axis).

Such problems have been studied in detail by Twersky (1],
{2] for both acoustic and electromagnetic waves. He has pre-
sented analytical results for elliptical cylinders and ellipsoids
in the long wavelength approximation including the effects
of the pair correlation function, The formulation that we pre-
sent is quite similar but is, however, more suited [3] for numeri-
cal computations at higher frequencies requiring smaller matrices
to yield convergent results. The dispersion equation that we solve
numerically is compared to that obtained by Twersky. Both
treatments rely on the quasicrystalline approximation (QCA)
to break the heirarchy of equations for the ensemble average
of the field exciting a particular scatterer. As a resuit only a
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Very recently Tsang [12] has also reported some results for non-
spherical, randomly oriented particles.

Wave Propagation in Media with Aligned Nonspherical Scatterers

Consider an isotropic medium characterized by a refractive
index /e in which aligned rotationally symmetric scatterers
are randomly distributed. The rotational axis of symmetry is
taken to be the z-axis. Plane harmonic waves of freq_uency w,
propagate in the direction ko(a, ). If U°, U¢, and U? specify
the incident field, the field exciting the jth scatterer and the field
scattered by the ith scatterer respectively, then self-corisistency
requires that

(7":(70+Z(7;_

jmi

(1)

The exciting and scattered fields are expanded on a basis of
vector spherical functions, as follows [6] :

Ue(7) = E 2 Aimo ReGrmolF=F),  IF-F1<2a
r=] Imo (2)

- 2 - -

Uf(;)=2 E f,',,,,,OWr:ma(’- ;i)v Ir- r,-|>2a
r=] Imo (3)

where r; denotes the center of the ith scatterer and a is the radius
of the circumscribing sphere.

Using the extended boundary condition method [S] we can
derive a T-matrix to relate the unknown coefficients a and f
as follows:

fr’lmo'= 2

r'm’

rima,r I‘m'a'arlm a'

(4)

where TY, the T-matrix of the ith scatterer, depends only on the

frequency w and the geometry and nature of the scatterer.
Substituting (2), (3), and (4) in (1) and using the translation

addition theorem for the vector spherical functions, we obtain

;.:‘ knowledge of the two particle correlation function is required. ol = dnil A (k)e ko i

o In a recent report [4] we have shown what type of multiple

q scattering processes are included in the QCA and which ones + Ez E O nl(, - ,,)7-/, ,,a . (5)
»': - are neglected. The response of a single scatterer to the field jein A " !

- exciting it is characterized by a T-matrix. The T-matrix is numeri-

'S cally generated on a basis of vector spherical functions using WNeré the abbreviated index n represents the set {r, /. m, o},
& . Waterman's extended boundary condition method [5]. [6]. A are vector spherical harmonics, Ay = ¥ imo. Ay =r X A4,
S Earlier work using this general scheme was restricted to randomly ~31d On'n is the translation matrix [s].
o oriented nonspherical scatterers or for wave propagation restricted A configurational average is performed in (5) over the random
! to the alignment axis [8]-[11]. Numerical results are presented Positions of the scatterers and the QCA is invoked in the usual
- for aligned spheroidal scatterers as a function of frequency, Manner [9]. For identical scatteres, we obtain

volume fraction of scatterers and the direction of propagation.

(al), = dmi'dp(Ko)e'kko i

e Taln 4

LU Y VALV Y e S
;
-

Manuscript received October 29, 1984; revised March 11, 1985. This work

L wa(;;x_;)poned by the U.S. Army Research Office under Contract DAAG29-83. + 2 E Z Tu'n [( ap, b i%n’ n(’. - r)
Y - K #* n”
The authors are with the Department of Engineering Science and Mechanics. e
Pennsylvania State University, University Park, PA 16802, p(;, I 7) d;/ (6)
. 0018-926X/85/0800-0886501.00 © 1985 IEEE [

'\ . .
.
T Al e L A et T

f



» 1
[
IEEE TRANSACTIONS ON ANTENNAS AND FROPAGATION, VOL. AP-33, NO. 8, AUGUST 1985 887
‘ where p(7;i7;) is the conditional probability distribution func- The four quantities B+%, B32:%, B'2:* B21:* are vestiges
> tion and (a},~); is the conditional expectation of @, with a scat- of the translation matrix after the angular and radial parts have
© terer fixed at ;. been absorbed in the integration. Expressions for them may be
The average exciting field is assumed to propagate with the found in terms of the Wigner coefficients and are given below:
!‘ wavenumber K of the effective medium. K = K, + iK, isa com- e 228 m'em
plex frequency dependent function unlike the wavenumber k = B =8'%* =(=1) (Mem €m'[4€m s m ) 12
0 edium. Thu
wle if the St:,; l:,m T %) S (=DU=T+r)2 [(21+ DEr+HEA+1) |2 .
o (ap); = Xpe "o ' I+ )ra+m D !
- when substituted into (6) permits us to evaluate a portion of the !
integral for impenetrable pamcles. ie., p(r,l F)y=0if lr,—r,] < . r 1 a\/r 1 A
' 2 and p(Fi7y) = (1/Ve(rn -1 7 1) for |7 — ;1 > 2a where ¥ 00 0 m mim
:' is the large volume of the system such that the number density
no(=N/V) is finite. For details we refer to our earlier work S +FDHI+ DA+ D))
. in [9], the difference in this case being k, * z.
Ny If the scatterers are rotatjonally symmetric, then the Zmatrices ,
W are diagonal in the azimuthal index, i.e., m" = m". In this case B'*t = Bl (C1)™ 2™ (ne € [AEm ym )t 2il T AN |
we can assume, without loss of generality, that ko isin the x —
iy z plane since there is a complete symmetry in the x — y plane. .RZH' DE+DEA+D llz( It -1
: Further there is a very simple relationship between the dispersion L W+nrag+1) 00 0
- equations that rtesult for wave propagation with polarization |
paralle] to the x — z plane and perpendicular to the x — z plane. r f A
SR b s phire N i
& 1lmo 2lmo . [)\2—({—1)2]”2[(1’4'14’ 1)2_)\2]1/2. (12)
e Xllmo_nuz 2 E i [{n"fo.ll"oxn"'o . * !
-~ [ T Equations (8a) and (8b) may be written in vector matrix nota- ‘
- tion in the form ‘
+ Tn’o‘u"u\’u AX 8"
. Xi=M;X;. ' (13)
- Yx m-m e(kO)( l) - 8” -Yx m'em e(ko)}
' B . {T”; ek “ 4 T'", ,_2,-,X'1", ,} The dispersion equation for the effective medium then becomes
B Y a o m elho)(=1)" 185 - Mij(w, K, k)| = 0 (14
_ . 161a? where My, itself is an infinite matrix for each i, j, The determinan.
=B TY s e e(ko)}] T (H)\ +4rh}  1al equation must be solved numerically using suitable forms of
the pair correlation function g(x), for given w, ko, no, and T.
! (8a) It is seen that the solution will depend explicitly on the direction
. and of wave propagation Ic,,, rendering the medium effectively aniso-
(! , , tropic.
Xaime=ng 2 25 PMUTT 1170 X g
::. fm' I A=\l -1 RELATIONSHIP TO TWERSKY'S DISPERSON EQUATION
+ 7-0;"0 are ;'I'e} (B3 Yy m' - elho}(=D)™ ll.'l a series‘ of papers, Twersky [1], [2] has derived the dis-
_ . persion equation invoking the quasicrystalline approximation and
- B!2.- Yam em e(ko)} including the effects of pair correlation for both acoustic and
- , , , , electromagnetic wave propagation in pair correlated random
+ {T;"r:,u"o Xiro + T;"I'e.zl"e Xore} distributions of aligned scatterers. Forpaspherically symmetric
-(B**y, e e(io)( Hm statistics, i.e., requiring a spherical excluded volume even for
- ’ nonspherical scatterers, we can show that the dispersion derived
e 6 2 by Twersky [2] is identical to (8a) and (8b) when the scattered
+ B“ “Yam em e(ko)}] PEs] (JH)+ 4nl, field is written as an expansion in vector spherical harmonics.
In (2, eq. (81)], the dispersion equation for electromagnetic
where ) (8b)  wave propagation in aligned, random distributions is given as
- UHW = kjn(2Kay\(2ka) ) Com = -3 “ﬂ"[&( u ,>C"—Cz( u !\B,,]
-~ ~ Kix(2Ka)hy(2a) e vis vis/
«a and )
I, = B . 2 + gmu M a
. A [#(x) = 1], (Kx)hy(kx)x? dx. (10) B3| Ca Cot +Cy B, il (15a)
o 2a vis vis
e
3
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where in our notation
n E [.0, m] v

(15b)

m€ [0, =}

are the scattered field coefficients.

a;r;u "Tll le
A R

is the T-matrix of an individual scatterer and the two symbols
C, and C; are related to the Fourier transform of the product
of the pair correlation function and the translation matrix as in
(6).

In the notation of the present paper and the abbreviated index
notation we may write Twersky's equation, (15a) (15b). in the
form

(X, _ T2 G Xl] (16)
X, T TRl G X

We note that (8a) and (8b) may be multiplied from the left by
the T-matrix, so that the dispersion equation is in terms of the
average scattered field coefficients rather than the exciting
field. Then usmg(]"),,_zs SARN X'K o*Fi we can rewrite the
dispersion equation in the form :

X' =a, +no Z Tnn fan n (’ )elKko "' X" g("'ll)dr
n N
an
We further note that using the integral representation of the

vector spherical functions the translation matrix can be written
in the form

onn'(k-;) =2 / d'; A.n(i) ‘ /;n'('y)[i(l —6,0)
Ce

(=) + 5y fekTE (18)

where C, are the contours. Using properties of the scalar pro-
ducts of vector spherical harmonics of the same argument as given
for example by Twersky [2], we can show that

o\ iKEp 2 - - C -C
[a""'(kx)elxko xg(lxl)dx = ‘ ! : i 9

as defined in {2, eq. (80)} so that the dispersion equation derived
here is identical to that of Twersky.

RESULTS AND DISCUSSION

The dispersion equation (14) was programmed on an [BM
370. The main parts of the program consist of subroutines that
1) generate the T-matrix for a given w and shape of scatterer,
2) set up the matrix 8,; — M, 3)special function programs,
4) determinant solver, 5) complex root finder based on Miiller’s

r'““!'!'““'.‘!"!"'!‘*\ ptal sath dnb safe Sl ALk Bnd Gal tad Snd dod Mh Sot Bk Al Sl Bal B Saic Ao il ekt A At A R0t gl auih el gl ol S al atul ot gl gt
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Fig. 1. Plot of attenuation versus normalized ber for a distribution

of ahgwed spheroids for wave propagluon n a =583 anda = 0°

method and a main program that specifies the parameters w,
n,, a, k.., and the shape and nature of the scatterer. The root
finder returns the value of K = K, + iK, that renders |§; ~
My | = 0. This is then the complex, frequency dependent effec-
tive wavenumber of the medium. Although simple relations
exist between the dispersion equations for parallel and per.
pendicular polarization, the resulting wavenumbers K" and K* are
in general different.

The truncation sizes of both T and M are varied till con-
vergence is obtained. The computatxon is more time consuming
than for the case when k,, = 7 because an additional summation
on the azimuthal index is involved, i.e., the aximuthal modes
are no longer uncoupled. This involves the storage of fairly large
matrices. Typical computation time for a lossless oblate spheroidal
dielectric scatterer of aspect ratio 2:1 with the dielectric constant

= 3.168 for a given w, n, and k, is about 60 s after the
program has been tested for the correct matrix size.

We now present results in the form of plots of the imaginary
part of the relative effective dielectric constant (e) as a function
of ka = waje, ko(a, f =0) and ¢ = n,4na®/3 where a is the semi-
major axis of the oblate spheroid of aspect ratio 2:1 and ].25:1.
We recall that (e) = K2/k?, at ka ~ 1.7 when a crossover occurs.
In Fig. 1, the attenuation given by Im (K/k) is plotted asa func-
tion of ka for both parallel and perpendicular polarization for
a=58.3° and ¢ =0.21. Also included in the figure is the attenua.
tion for a@ = 0 and aspect ratio 1.25:1. In Fig. 2 the attenuation
is plotted as a function of a varying from 0° to 90°. The attenua-
tion is a slowly varying function of a and is maximum at a = 0°.

In Fig. 3, the complex plane plot of the relative effective
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Multiple scattering of elastic waves by cylinders of arbitrary cross
section. II. Pair-correlated cylinders

V. K. Varadan, V. V. Varadan, and Y. Ma
Laboratory for Electromagnetic and Acoustic Research, Department of Engineering Science and Mechanics,
The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 23 September 1984; accepted for publication 28 June 1985)

Multiple scattering of elastic waves by randomly distributed cylinders of arbitrary cross section
has been considered. Because the pair-correlation function, as well as the quasicrystalline
approximation, has been incorporated in the presented formalism, the effective phase velocity, as
well as the coherent attenuation in dense systems, has been investigated. A more efficient
scattering formalism (SF) has been employed rather than the exciting field formalism (EF) used
carlier by the authors. Closed form expressions for the phase velocity and the attenuation are

given in the Rayleigh limit, and numerical results are presented for a wide range of frequencies

and concentrations.

PACS numbers: 43.20.Fn

INTRODUCTION

In a previous paper,' we presented an exciting field mul-
tiple scattering formalism for cylinders using the concept of
a scattering operator—the 7 matrix.? This formulation used
the 7 matrix to characterize the scattering by a single isolat-
ed scatterer followed by configurational averaging tech-
niques. Lax’s quasicrystalline approximation (QCA)® was
used to truncate the resulting hierarchy of equations. This
yielded a set of “hole correction” integrals which were evalu-
ated analyfically, and the extinction theorem was invoked to
yield the dispersion relation characterizing the bulk or effec-
tive properties of the medium which was solved numerically.
Computations of the effective coherent wave attenuation as
a function of the nondimensional wavenumber ka (*'a” being
a characteristic dimension of the obstacle) were presented in
Ref. 1 for various concentrations (c). The formalism based on
a sparse distribution of correlated scatterers leads to unphy-
sical nulls in the plots of coherent attenuation at high values
of the concentration (which disappear at higher values of ka).
Moreover, in the Rayleigh limit, the formalism gives only
the phase velocity and does not provide the analytical
expression for coherent attenuation.

T}\Ie incorporation of the complete correlation function
between the positions of the scatterers provides the effective
properties, coherent attenuation, etc., for dense systems. If
the QCA is invoked, it has been shown by Twersky*’ that
only a knowledge of the two-body (pair) correlation function
is required. Twersky has considered a general formalism for
scalar waves in Refs. 46 and for electromagnetic waves in
Ref. 7.

In this paper, we consider the multiple scattering of elas-
tic SH waves by randomly distributed cylinders incorporat-
ing the QCA and the pair-correlation function as given by
Twersky.® We studied the problem using a scattered field
formalism (SF) rather than the exciting field formalism (EF),
since SF provides a more convenient basis for scattering of
elastic longitudinal (P — ) and shear (SV — ) waves® by elas-
tic scatterers and by piezoelectric scatterers® which couple
both elastic and electromagnetic fields. The SF employed

1874
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here is precisely the formalism introduced by Twersky in the
50’s. When performing the numerical calculations, we find
that the SF is more suited for computations at higher fre-
quencies requiring smaller matrices than the EF reported by
us earlier.! Closed form expressions for the phase velocity
and attenuation are presented in the long wavelength limit,
and it is shown that our results for circular and elliptical
cylinders agree with those given by Twersky” for all concen-
trations. Numerical results are presented for both phase ve-
locity and coherent attenuation for. higher frequencies.

I. DISPERSION EQUATION USING SF FORMALISM

In this section only the essential details and the final
result for the dispersion equation based on the SF (scattered
field) formalism are presented. The equations presented here
are identical to those given by Twersky*"'° if the notation
used here is properly interpreted.

We consider ¥ (¥N— o) arbitrary shaped (rotationally
symmetric), long, and parallel cylindrical scatterers embed-
ded in an infinitely extended elastic solid (matrix). Let p,, i,
be the density and rigidity of the matrix and p,, u, those of
the scatterers. A plane SH wave of unit amplitude, frequency
@, and wavenumber k is incident perpendicular to the axis of
the cylinders in the direction k,.

From Ref. 1, one can obtain an equation relating the
scattered field coefficients in the form

b: = z T:m (02 + i Z( - l)n'+n.¢n. - (rij)b(")'

i n
y

where the T matrix T, relates the exciting and scattered
field coefficients for a particular (ith) scatterer, % = " ¢’**™
are the known incident field coefficients, r, =r, —r, is the
vector connecting the ith and jth scatterers, and y, are out-
going cylindrical wavefunctions. Equation (1)is precisely the
same as introduced by Twersky in the 50's.'°

Since the number of scatterers is large, it is more mean-
ingful to perform a configurational average over the random

® 1985 Acoustical Society of America 1874
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positions of all scatterers except the ith, which is assumed to
be fixed. The details can be found in Ref. 5. We thus have for
identical scatterers

(1), = ST (a2 + =g [ (-1

X (5,1 5%, U5 I, ), @

where ( ), and ( ), denote the configurational average
with the ith scatterer held fixed and both the ith and jth
scatterers held fixed, respectively, and p(r;|r,) is the condi-
tional probability distribution function. For impenetrable
cylinders, pir, |r,) = 0 if [r, — r,| <2a, where “a” is the lar-
gest dimension of the cylinders and p(r,|r,) = g(lrj —r,)/S,
where Sis the large area over which the cylinders are distrib-
uted. Here, we have assumed isotropic or circular statistics
even for noncircular cylinders and the function gix} is the
radial distribution function. Equation (2) yields an infinite
coupled hierarchy for the conditionally averaged scattered
field coefficients. It can be truncated by using the quasicrys-
talline approximation (QCA) suggested by Lax® and
Twersky. In this approximation, (b,),=(b}),, which
has been proved valid for a wide range of concentrations.
Further, we assume the existence of a coherent field propa-
gating in the direction k, of the incident field with an effec-
tive, complex, frequency dependent wavenumber X = K,
+ (K, of the form

(bLy =X, %5, _ (3)

whcrc X, is an unknown constant.

. Equation (3) is substituted in Eq. (2) and the extinction
thcorcm can be invoked to cancel the incident wave term on
the right-hand side of Eq. (2) (refer to Twersky" for details).
The resulting equation is

Xn = nOZ 2 Tnlllm,mxm' (4)
where

D =20~ {(k? = K?) ™" [2ka/,, _ ,(2Ka)
XH,, _(2ka) — 2KaH,, _(2ka\] ;, _ ,(2Ka})]

+4a? J' “H,._ (2kaxV,, _ (2Kax)
]
x [ gix) — 1]x dx]}. (3)

In Eq. (4), we have assumed that V and S are infinitely large
with the number density n, = (¥ — 1)/S. Equations (4) and
{5) areidentical to those obtained by Twersky” if the T matrix
is interpreted as the single scattering coefficients.

Equation (4) is a system of linear simultaneous equations
for the coefficients X, . For a nontrivial solution of the coher-
ent field, we must require the determinant of the coefficient
matrix to vanish. This is the required dispersion equation,
which can be solved for the effective propagation constant K
as a function of k and ¢. This will be discussed in Sec. II. The
values of g(x) obtained by Monte Carlo calculations are used
in our numerical computations.'*'?
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P S Sl S i e X A A G B Al A i .'.'.'E'v.'\"'.'“\}'"l"l"l"-'“"ﬂ“"-’"-‘"{‘l

Il. RAYLEIGH LIMIT SOLUTION

The dispersion relation derived in Eq. (4) can be solved
in detail to predict the phase velocity and coherent attenu-
ation for a two-phase composite medium. Although the sys-
tem of equations requires a numerical approach to yield so-
lutions for higher values of frequency, analytical results can
be obtained for low-frequency approximations. Including
the effects of correlation between scatterers, it is seen that an
attenuation factor is obtained in the Rayleigh limit. Analyti-
cal results are seen to mainly depend on the form of correla-
tion assumed. The g{x) obtained from the virial series and the
geometrical considerations by Twersky>® agree very well
with Monte Carlo calculations. Using Twersky’s results for
g(x), we hence obtain the dispersion equations for both elas-
tic circular and elliptical cylinders, respectively, embedded
in an elastic matrix:
circular cylinder

I:_:= [[1+c(d_1)](l+c i;:)](l—c i;:)_x
+ %Ik’a’c(l—f-‘)’[(l +°’(‘ —¢ :::)2]-l
i
v-i1-e (372 .

and

elliptical cylinder

% =[n+clu—m(l+m %%,bl)] |
X(l—cl'('%"z(:_:—)m)_l
+ %”k’a’[[dl—c)’l
fieafi-a L]
i (U]

c=ngma?, ¢, =ch/a<c. vl

These results agree exactly with those of Twersky® if we put
d = C’'and m~! = B’ inhis Eq. (70).* In this paper, we pres-
ent numerical results at higher frequencies for various aspect
ratios of elliptical cylinders. This is discussed in Sec. III.

lll. NUMERICAL RESULTS AND CONCLUSIONS

The analytical expressions for the phase velocity and
coherent attenuation as obtained above could be derived
only for very low values of ka, as higher approximations
would lead to unwieldy expressions. A quantitative estimate
of the multiple scattering process at resonant and higher fre-
quencies can be obtained by numerically solving the disper-
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FIG. 1. Normalized phase velocity versus concentration ¢, for different as-
pect ratios.

sion equation, Eq. (4). The computational scheme has been
described previously' and will not be repeated here.

To study the frequency dependent phase velocity and
attenuation of composite materials, we consider an alumi-
num matrix reinforced by boron fibérs whose density ratio
d =0.93 and shear modulus ratio m = 6.46.-In order to

show the effect of density and shear modulus on the wave -

propagation characteristics through composites, the com-
posite of BaTiQ; fibers in polyurethene which givesd = 5.18
and m = 0.69 X 10* is also used.

In the Rayleigh region (ka<1), the phase velocity of the
composite is computed for different fiber concentrations for
various aspect ratios b /a and the numerical results are pre-
sented in Fig. 1, where the phase velocity is normalized with
respect to the shear velocity in the host medium (unless spe-
cially mentioned, calculations are made for boron-alumi-
num composite). One sees that the phase velocity increases

BoT-O‘ n POLYURE TRENE

%a+0.05

Reln/K)

a0

e

FIG. 2. Normalized phase velocity versus concentration ¢ for circular
BaTiO, fibers in polyurethene.
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FIG. 3. Attenuation coefficient versus concentration ¢, for different aspect
ratios.

with increasing concentration for the same aspect ratio.
However, for the same concentration, the phase velocity in-
creases with the decreasing aspect ratio since the number of
scatterers becomes larger when the smaller aspect ratio fi-

For circular BaTiO, fibers in polyurethene, the charac-
teristics of the phase velocity against concentration are
greatly affected by the larger shear modulus ratio which can

= J
~
¥~
r BaTiO; in POLYURE THENE ]
v -
kas 0.0%
. bsa=10 -
IC')‘ i i
0 20 a0 €0
(%)

FIG. 4. Attenuation coefficient versus concentration for BaTiO, in polyur-
ethene.
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FIG. 5. Normalized phase velocity versus nondimensional frequency ka for
different aspect ratio and concentration.

be seen from Fig. 2. The phase velocity ratio first becomes
less than 1 and then increases to become greater than 1 after
¢ = 0.5. Figure 3 presents the attenuation for different fiber
concentrations and various aspect ratios. One is able to ob-
serve thatin the long wavelength limit the peak of the attenu-
ation occurs at a smaller concentration for smaller aspect
ratio fibers. The larger the number of scatterers, the faster
the attenuation rises and falls for the same concentration. In
other words, the transition phenomenon in the two-phase
medium may occur at a smaller concentration if the smaller
aspect ratio fibers are used in the low-frequency range. A
similar attenuation trend is also found for BaTiO, fibers as
presented in Fig. 4.

Ba'l'n()3 in POLYURETHENE

C»0.40
b/as

o8 A L "
o X} (o] R} 20

FIG. 6. Normalized phase velocity versus nondimensionai frequency ka for
circular BaTiO, fibers in polyurethene.
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FIG. 7. Attenuation coefficient versus nondimensional frequency &a for duf-
ferent aspect ratio and concentration.

Figure § presents numerical results of the frequency de-
pendent phase velocity for different concentrations as well as
aspect ratios. When the aspect ratio b /a is close to unity, the
phase velocity gradually decreases and then increases with
the increasing frequency. Nevertheless, this behavior be-
comes quite different when a smaller aspect ratio is em-
ployed. As can be seen in Fig. 5, instead of increasing, the

0
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=
= L
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<
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:" bras)
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H ---¢20.48
!
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F1G. 8. Attenuation coeficient versus nondimensional frequency ka for cir-
cular BaTiO, §bers in polyurethene.
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phase velocity gradually decreases after ka is about 2.0. But
when the same aspect ratio fibers are used, the higher the
concentration, the larger is the phase velocity, as expected.

If a different composite is used, i.e., BaTiO, fibers in
polyurethene, the characteristic of the phase velocity against
concentration is totally changed, which is depicted in Fig. 6.
It is noted that the density and shear modulus play an impor-
tant role in the results. The results show a resonant pheno-
menon which is typical for composites reinforced by materi-
als with a much larger density and elastic modulus at high
concentrations.

In Fig. 7, we have plotted the attenuation coefficient
al = 47K,/K,) vs ka for two values of concentration c. In all
cases, the attenuation first increases rapidly with increasing
frequency up to about ka = 1.6, which is generally valid fol-
lowing an extension of the Rayleigh scattering. law
[a@ ~(ka)?]. After this frequency, the attenuation increases at
a milder rate and behaves differently for different aspect ra-
tio fibers due to the higher mode vibrations. One general
observation is that the smaller the concentration, the higher
attenuation for ka less than about 1.6. After this value there
is a transition range of ka, where the fibers of larger concen-
trations produce higher attenuation and the larger the aspect
ratio, the narrower and transition frequency band. We do
emphasize that the concentration used in the calculation is
quite large and the attenuation is, therefore, reduced with
the increasing concentration which can be found in Fig. 3.

The trend of the attenuation curve is also applied to the

1878 J. Acoust. Soc. Am . Vol 78, No 5. November 1985

composite of BaTiO, in polyurethene, which isshownin Fig
8. However, the magnitude of the attenuation is about ten
times larger than that of the aluminum composite due to the
much larger shear modulus used.
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Propagator model including multipole fields for discrete
random media
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A propagator model using Feynman diagrams is presented for studying the first and the second moments of the
electromagnetic field in a discrete random medium. The major difference between our work and previous treat-
ments of this type is that all diagrams are in a basis of vector spherical functions. Each propagator or infinite-
medium Green's function is the translation matrix for spherical functions, and each scatterer i3 characterized bya T
matrix that, in turn, is a representation of the Green's function of the scatterer in a basis of spherical functions. All
orders of multipoles are formally retained, in contrast to previous work involving the dipole approximation. Partial
resummations of the scattering diagrams are shown to be related to the quasi-crystalline approximation and the
first-order smoothing approximation. The lowest-order term of the ladder approximation for the incoherent
intensity is evaluated. Sample numerical results are presented and compared with available experimental results.

INTRODUCTION

We consider the propagation of plane coherent electromag-
netic waves in an infinite medium containing identical, loss-
less, randomly distributed particles. Our aim here is to
characterize the random medium by an effective complex
wave number K (which would be a function of particle con-

centration, the electrical size, and the statistical description -

of the random positions of the scatterers) and to study both
coherent and incoherent intensities as a function of frequen-
cy for various values of the concentration ¢ (the fractional
volume occupied by the scatterers). Although the formula-
tion is generally valid for nonspherical, aligned, or randomly
oriented scatterers, initial calculations are confined to
spherical scatterers, which generally give us a better picture
of the order of magnitude of the different contributions to

the intensity without the additional complications of non-

spherical geometry and orientation.

Extensive work by Twersky!-® has laid the foundation for
multiple-scattering theory in discrete random media. A
related approach using the T matrix of a single scatterer®
together with configurational averaging procedures have
been used by the authors to develop a computational meth-
od for the electromagnetic-wave-propagation problem in in-
homogeneous media.’-® Lax's'® quasi-crystalline approxi-
mation {QCA) is used in conjunction with suitable models
for the pair correlation function to obtain an effective wave
number K(= K + iK;) that is complex and frequency de-
pendent. In a classic paper, Frisch!! has demonstrated for-
mally the relationship between the present problem and its
analog in quantum mechanics. He used Feynman diagrams
to show that the mean Green's function for the random
medium is analogous to the Dyson equation, whereas the
second moment of the Green's function is analogous to the
Bethe-Salpeter equation. More interestingly, he showed
that retaining only twn-body correlations and summing all
terms involving sequential scattering and correlation is
equivalent to the first-order smoothing approximation first

0740-3232/85/122195.07802.00

introduced by Bourret!? and used by Keller!? and his co-
workers.

In this paper, we represent the multiple-scattering series
in a basis of vector spherical functions using the T matrix to
characterize each scatterer. Formally, the T matrix in-
cludés a detailed description of the scatterer to all ordersin a
mulftipole expansion, this in contrast to previous treatments
that invoked the dipole approximation. The so-called prop-
agator or Green's function that propagates the signal from
one scatterer to the next is again represented in a basis of
vector spherical functions. This again is a consequence of
not invoking the dipole approximation to describe the scat-
terer. Thus instead of simply using a full-space Green's
function of the form exp(ikr)/kr, as would be appropriate for
peint scatterers, the propagation matrix used here describes
the propagation of a complex, multipole field to the next
scatterer. )

The partial resummations that can be performed by re-
taining only two-body correlations including only sequential
scattering lead to so-called dressed propagators. These
propagators describe a medium with a different propagation
constant. One of the new observations we make is that the
QCA first used by Lax!? and the first-order smoothing ap-
proximation of Bourret!? and Keller!3 appear to be the re-
summation of the same class of diagrams. This does not
seem to have been commented on before.

In addition, the intensity of the electromagnetic field is
also represented with the help of Feyaman diagrams. The
so-called coherent intensity is the summation of all diagrams
that involve two independent field lines, whereas the inco-
herent intensity is the summation of all diagrams that in-
volve two distinct field lines intercepting different scatterers
but that are, however, coupled by positional correlations
between scatterers. The lowest approximation to the inco-
herent intensity leads to the ladder diagrams. We also refer
to the work by Tsang and Kong,'* who have computed the
hackscattered intensity in single-scattering approximation.

¢ 1985 Optical Society of Amcrica
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Sample numerical results are presented for the first and
the second moments of the field and compared with the
experiments of Killey and Meeten.!?

MULTIPLE-SCATTERING FORMULATION

Consider wave propagation in an infinite medium of volume
V — « containing a random distribution of N scatterers, N
— », such that ng = N/V, *Ye number density of scatterers,
is finite. Plane harmonic waves of frequency w propagate in
the medium and undergo multiple scattering. Let E, E°,
E., and E# denote, respectively, the total field, the incident
field, the field exciting the ith scatterer, and the field scat-
tered by the ith scatterer. Then self-consistency requires
the following relationships among the fields’™%:

N
E=E+ Z E; 1)
im]
and
N
=E°+ ) E/. (2
Jomi

Let 2;‘% generally denote outgoing functions (Hankel
functions) and functions regular at the origin (Bessel func-
tions). We dispense with vector notation, and the abbrevi-
ated index may denoten —r,l,m,0;7 = 2,3;l¢e [0,=];me
[0, {]; see Refs. 7-9.

At a field point r in the host medium, the incident, scat-
tered, and exciting fieids are expanded as follows:

E'r) = S a, Re v, (n) S 3)

n

Ee(r) = Z

n

a'Rey (r—r). |r—rv]<2a, 4)

E'(r) =Z/,,' Ouy, (r—r), (r—r), |r=r| > 2a,

(5)

where r, denotes the center of the ith scatterer and a is the
radius of the sphere circumscribing any scatterer. The coef-
ficients a, are known, whereas the coefficients f,' and a. are
unknown but are, however, related through the T matrix:

/n‘ = Z Tnn’an"‘ (6)

Substituting Egs. (3)-(6) into Eq. (2} and using the trans-
lation-addition theorems for spherical wave functions and
the orthogonality properties of spherical harmonics,® we ob-

tain
a) =a,+ EZZ Tnn(F; = BT gt (7
where -
Ouy,(r—r) = 2 an{F, = PRy, (r — (8)

o
and g,, i3 the translation matrix for spherical wave func-
tions.
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Fig. 1. A diagrammatic representation of multiple-scattering pro-
cesses.

If we substitute Eqs. (7) and (5) in Eq. (1) and iterate, we
obtain

E(r) = E%r) + > Ouy,(r —r)Tpa,’

+ ZZ OU Yo(r = 1) Ton0ine(F,)Tnep-a,
i

+ZZ’ Z’Ou \pn(r—ri)TM,'...-ﬁ-...,. (9)

wherer;; = (r; — r;).

The first term in Eq. (9) is the incident field reaching the
observation point r denoted by P in Fig. 1A. The second
term of Eq. (9) is a sum of N contributions, each of which can
be represented by a diagram of the type shown in Fig. 1B.
The thin line represents the incident field Ey, and the thick
solid line represents the propagator Ou yn(r — r;)T», that
propagates the field from scatterer { to observation point r.
The sum of all N diagrams of this type is termed single
scattering. The third term of Eq. (9) is a sum of N(N ~ 1)
contributions, each involving a pair of particles, and is repre-
sented by the diagram of Fig. 1C. There are also N(N — 1)
terms of the form given in Fig. 1D that involve only a pair of
particles. There are N(N ~ I}{(N — 2) terms of the type
shown in Fig. 1E. As seen from Fig. 1, the three-body pro-
cess can include any number of scattering in any order
among the three objects.

FIRST MOMENT OF THE FIELD AND THE
QUASI-CRYSTALLINE APPROXIMATION

Equation (9) can be averaged over the positions of the parti-

cles to yield the coherent, average, or first moment of the
field:
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(E(m) = E%0) + > Ty f Ou ¢,(r — r)a,'p(r,)dr,

+ z Z’ Tnn'Tn'n' I OU ¥”n(r - ri) f dﬂ’n'(ru)an"lp(rt)
L

X p(r;|e)drdr; +..., (10)

which involves all orders of joint probability functions, p(r;),

plr;lr), ete.

Tosolve Eq. (10) is a formidable task, and it is not surpris-
ing that the QCA was introduced at an early stage by Lax!®
and Twersky. Toshow the connection between Eq. (19) and
the QCA, we now place some severe restrictions on the al-
lowed multiple-scattering processes. First, we require that
each particle contribute only once to any term of the multi-
ple-scattering series. Further, we do not permit back and
forth scattering between a pair of scatterers. Finally, the N-
particle joint probability function is factored as follows:

plry, ro ... ry) = p(r)p(x, | r)p(rg|ry) ... p(ry|EN_)).
(11a)

With the above assumptions, Eq. (10) can be represented
diagrammatically as

(Eqea) =EN + 0w £ N v £ ¢
T e (11b)

<

where < denotes the incident plane wave, ® denotes a scat-
terer, ®~® denotes scattering from particle 2 to particle 1,

@~ ® denotes the correlation between the positions of parti-

cles 1 and 2, and, finally, «—® denotes the propagation from
particle 1 to the observation point r. In Eq. (11b) @« will
be replaced by a,, each @ @ will be replaced by ToT,
where o, the transition matrix, accounts for the propagation
of waves from one scatterer to another, and @~@ will be
replaced by pil, 2). Hence the explicit form of Eq. (11) is
then

BN = By 4 .‘Vj Ouyir = r)Ta'p(r)dr,

+ N Ou e = e Tair Ta’pl(l, 2)dr dr,

« N f Ougir = rTaie pptl, 2To(ry)p(2, 3)Ta?

xdrdrdr; + N Ou gir = r)Talr,)p(1,2)
X Tatrgyipi2, DTatry)p3, ) Ta'dr, .. deg+ ... (12)

In Eq. (12), we have removed the restrictions in sums, such
as 2, I, I/, by noting that p(1, 2) is automatically zero if r;
= r;. Thus the propagators in Eq. (12) may be interpreted
as cut-out propagators that vanish if the argument is less
than the hard-core diameter of the scatterers. For spherical
statistics we note that

1 1
p(r,)-?- p(1,2)-p(rl.r2)=T/—g(lr,—r?|).

We now introduce spatial Fourier transforms of the trans-
lation matrix and the radial distribution functions and de-

Vol. 2, No. 12/December 1985/J. Opt. Soc. Am. A 2197

note them by #(k) and gtk), respectively. Using the convo-
lution theorem, Eq. (12) can be simplified to

(E*Yx)) = E%r) + ng § Ouy(r — r)T(1 + nyoetKiT

+ n%eg(K)Tog(K)T

+ nSog(K)Tag(K) Tog(K)T

+ - - -Jexp [iK,, - (r, = r,)]a®dKdr,dr,, (13)
where

72(K) = § o(x)g(x|)e®*dx. (14)
The terms on the right-hand side of Eq. (13) can be summed
formally, and we can rewrite Eq. (13) as
(E*(r)) = E°(r) + § Ouyy(r = r))T,y

X ng § (1 = neog(K)T] ™!
X exp[~iK - (r; ~ ry)a,.’dKdr,dr,. (15)

This new form of the average field can be interpreted as an
incident plane wave propagating through an effective medi-
um of propagation constant K and propagator (1 = ngag 7)™}
undergoing scattering from a particle at r, and then propa-
gating to the observation point r with the wave number of
the host medium. In Eq. (15) we can write

Hype(r) = 1)) = [ [1 = ngag(K)T];).
X exp[~iK - (r; = rp)]dK;  (16)
then )
(E*Y(r)) ‘- FO + ng f Ouyn (e =T, H,polr, = £5)
X a,.%dr,dr,. an

The dispersion equation in the model medium is given by
the zeros of A(K) that yield the effective propagation con-
stant of the medium. We recall that the propagator in the
host medium has a Fourier transform of the form 1/(k2 —
w?/c?) that has a pole at & = w/c. The poles of the new
propagator are then determined by the roots of the deter-
minantal equation:

1 = ngog(K)T = 0. (18)

In our previous papers we derived a dispersion equation
for the random medium by directly invoking the QCA in the
equation for the field exciting a particular scatterer. Thus,
if Eq. (7) were averaged directly, holdirg the ith scatterer
fixed, then

(@, =8, + 3N N (001, ) Ty (@) ) (19)
4 non

This immediately leads to an infinite hierarchy in which the
conditional average of a,' with p scatterers held fixed in-
volves a conditional average on the right-hand side with p +
1 scatterers held fixed. Thus a knowledge of all orders of the
correlation function is required. Asis well known, Lax trun-
cated this hierarchy by approximating

(a,), = (a,.), (200

This is the famous QCA. Twersky!-% has already stated that
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the*QCA neglects back and forth scattering and includes
only sequential scattering. By assuming that the average
field propagates with an effective propagation constant K,
le.,

(a,/) = X,.exp(iKky- ), (21)

and using expressions (20) and (21) in Eq. (19), we formally
obtain

‘Y'\ =ne f UM‘(rA;)Tn’n'p(r/{rn) exP[iK " (l'} - ri)]drjxn"
22)

This is a homogeneous set of equations for X,. For a non-
trivial solution, the determinant of the coefficient matrix
should vanish, leading to

1 — naog(K)T| =0, (23)

which is identical to Eq. (18).

Thus invoking the QCA is identical to a partial resumma-
tion of the multiple-scattering series represented by the
diagrams in Eq. (11b). Although this has been generally
known, no formal proof has been given before, especially
when the full multipole description for each scattering is
used. The more interesting observation is that Frisch!! has
shown that Eqs. (11) are also equivalent te the first-order
smoothing approximation. Thus it would seem that the
first-order smoothing and the QCA are equivalent. There
appears to have been no discussion of this in previous litera-
ture on the subject.

SECOND MOMENT OF THE FIELD INTENSITY

The intensity or the second moment of the field with polar-
ization & at r is simply defined as

I(r,w) =a- (E(r, wE(r, w)) - &. (24)

If Eq. (9) is substituted for E in Eq. (24), we get the multiple-
scattering series for the intensity. Diagrammatically each
field line in Eq. (24) can be represented as in Fig. 1. When
both fields are multiplied and then averaged together we get
correlations between scatterers on both field lines. Using
the same notation as before, the following diagrams result:

(o —3

Iir,w) = (a-E%%, +
———— —?—o_—

(25)

|
I
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where we have allowed only sequential two-body correla-
tions and grouped the terms into four categories. The first
term is, of course, the incident intensity. The second group
contains two field lines that are uncorrelated from one to
another but contain correlations within themselves. The
third group contains two field lines that, however, interact
with the same particles. The last group contains the ladder
diagrams but also allows sequential correlations within each
field line. All the other possible terms that contain dia-
grams of the type

have been neglected.

The first two groups of terms contribute to the coherent
intensity, and the last two groups contribute to the incoher-
ent intensity or spectral density of the field fluctuations.
The diagrams can be resummed by introducing the so-called
dressed propagators, if we refer to the translation operator
ana(rij) in the host medium as a bare propagator. The
dressed propagator is the propagator in a medium that al-
lows only QCA-type sequential-scattering terms with se-
quential correlations and is identical to Eq. (16). Such

propagators are represented by bold lines in contrast to the
bare propagators. Thus

I(r,w)= { t

(26)

The terms in (b) can be summed by using Fourier trans-
forms and convolution techniques, but the ladder diagrams
in (c) do not lend themselves very easily to resummation by
Fourier-transform techniques. The relative contribution of
the terms in (b) and (c) is studied numerically in the next
section.

NUMERICAL RESULTS

Three types of results are presented in this section. The
first type is the calculation of effective propagation constant
by solving the roots of the determinantal equation {Eq. (18)].
The numerical procedure for doing this has been described
in detail in Refs. 7 and 8 and will not be repeated here. The
computation requires the T matrix of the scatterer; here we
have used the multipole field for spherical scatterers. The
concentration c of scatterers (fractional volume occupied by
the scatterers) and the frequency are the other parameters
required. In addition, the pair correlation function is re-
quired. We have used values generated by Monte Carlo
simulation for hard or impenetrable spheres as a function of
distance between the spheres and the concentration of
spheres. The details may be found in Ref. 16.
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I T -
IS -
: In Figs. 2 and 3, the real and the imaginary part of the 10 L B ¢
. effective propagation constant in a distribution of Revacryl ¢
m spheres is plotted as a function of concentration for two ‘J .
- different frequencies denoted by the wavelengths A = 410 Q8 -
nm and A = 546 nm. These wavelengths were chosen be- . E
. cause our calculations could be compared with the experi- —_ 9
ments of Killey and Meeten.!> The agreement is very good, Z osf - g
\ .as can be seen from the graphs. The refractive index for 's :
Revacryl spheres used in the computation was taken to be n "é‘ _ ;
AT . = ka=0lJ :
! = 1.48, and the host medium is distilled water with n = " o4l 6= Oo < :
- 1.334. =3 ¢
" In Fig. 4, the lowest approximation to the coherent inten- H
sity that is given by the first term in Eq. (26) was®used to 02 e
=~ compute the coherent intensity. In lowest approximation,
'~'; o : A éna I ‘:O L
(%)
-~ 14 b REVACRYL DISPERSICNS IN DISTILLED WATER @
:" - o EXPERMERT (KILLEY & MELTEN)
7 M
- - THEOAY (VARADAN qf @t )
= 0.6 ka
.~ 137 as 100 nm 0.
.\: AeS46nm
P —~
L Qs
L33 4 J L 1 J
[¢} 10 20 30 40 50 04
o o)
<. Fig. 2. Phase velocity versus concentration c for Revacryl disper- —_ ¢=0.0
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Fig. 3. Coherent attenuation versus concentration ¢ for Revacryl
dispersions in distilled water at A = 410 and 546 nm.

.
.
C—

Q
e EXPEMIMENT (XiLLEY & wWCETEN
1 ~— THEORY (VARMOAN o1 ot }
7,
?I ¥ L as 100nm
A=546nm
<
[ - c20.0468
L 7 < -2
2 g €*0.491
l'..\ .
e sl o 05 10 15 20
ko

¥y €10.279 . (C)
r_ . ST\ ) ) ) Fig. 5. (a) The spatial Fourier transform /(K ko ~ 47} of g(x{) — 1

R o 7600 200 500 as a function of concentration c for ka = 0.1 and 6 = 30°. (b) The

rom) szatml I;‘puner tlra;m[fom 7((1)(120 —dk;) of g(1x}) ~ 1 as a function of

. . ‘ ' . ' observation angle 4 for ¢ = 0.10 and ka = 0.1, 0.5, 1.0, and 2.0.
‘o F|g: 4. Coherent intensity as a function of propagation depth z for The spatial Fourier transform f(K &y - kr) ofg(xd)~lasa functii)cr:
C.? various values of ¢ at A = 546 nm. of ka in the backscattering direction for ¢ = 0.05 and 0.10.
)
o’

2 W LB I I TV e v J
F f_‘f'/,‘f.'.' " a
o S DA A




Vel ool

r

r

Ya'e

b

d
o

Waves in Random Media

2200 J. Opt. Soc. Am. A/Vol. 2, No. 12/December 1985

Lor

NORMALIZED INCOHERENT INTENSITY

Fig. 6. Normalized incoherent intensity that is due to single scat-
tering from correlated scatterers as a function of ka for¢ = 0.10and 8
= 30°.

the intensity decays exponentially with penetration into the
random medium, the rate of decay being twice the imaginary
part of the effective propagation constant (K = K, +iKj) in
the medium. The rate is a function of the frequency, the
size of scatterers, the concentration of scatterers, and the
material properties. Again the results normalized with re-
spect to the incident intensity in Fig. 3 for Revacryl spheres
comes quite favorably with the results of Killey and Meeten.

In Figs. 5 and 6, the leading term for the incoherent inten-
sity involving only single scattering from one'scatterer (A) or
two correlated scatterers (B) is plotted far various parame-
ters. The total single-scattering result is denoted by C in
Fig. 6. The exact expression used in the computations is
given below:

Ij(r,w) = § - (E(r, w)E*(r, w)) - 4.

Ny
(kr)?

2
Z B AN T.a k| V,

x {1 +n, ] (g x| - Dexp(—i(K ko — kr) - x]dx}

N
(kr)?

2 -~
Z - A NT.a, k)| (1 + KRy = k).

A B
! (27)

ky is the direction of propagation of the incident wave, an(ko)
are the incident-wave field coefficients, /(K ko — kr) is the
spatial Fourier transform of [g(Jx| = 1], and A, = A,;, are
vector spherical harmonics withr = 1, 2, 3,

In order to study the difference in the order of magnitude
of corresponding terms (equal number of T matrices), one
can simply plot expressions A and B in Eq. (27) as a function
of concentration. Although these terms will be a function of
frequency for higher-order terms of the multiple-scattering
series, we can get a feel for the relative contribution of these
terms. They are plotted in Fig. 5(a) and one can see that,
even at a concentration of 10%, the value of the correlation
integral [term B of Eq. (27)] is approximately 36% of A.
This implies that there is no point in summing higher-order

Varadan et al.

terms in (b) of Eq. (26) without also retaining higher-order
ladder diagrams.

In Fig. 5(b), F(Kiko — kF) in Eq. (27) is plotted as a function
of observation angle for different values of ka. It can be
seen that for § = 180°, the contribution from f to the incoher-
ent intensity is greatly dependent on the value of ka under
consideration. InFig. 5(c),  is plotted for two values of c =
0.05 and 0.1 and 8 = 180° (backscattering) as a function of
ka.

The conclusion from Figs. 5(a)-5(c) is that the incoherent
intensity has contributions from both (b) and (c) in Eq. (26),
and more studies are indicated to neglect one in favor of the
other.

In Fig. 6, the normalized incoherent intensity is plotted as
a function of ka at ¢ = 0.1 for an observation angle of 30°.
The curve labeled C is the total contribution that is due to
single scattering; the curve A is due to completely correlated
or single scattering from the same particle I, and B is due to
I. Itisclear that B is not negligible compared to A.
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Design of Ferrite-Impregnated Plastics
(PVC) as Microwave Absorbers

VIJAY K. VARADAN, MEMBER, IEEg, VASUNDARA V. VARADAN, MEMBER, IEEE,
YUSHIEH MA, aNnD W. F. HALL

Abstract —This paper ls mntcmed with the modeling ol absorption of
microwaves in 8 comp ing a random distribution of Fe,O
particles embedded in PVC. The theoretical model based on 3 self-con-
sistent multiple scattering [ormalism, including the effect of statistical
correlations in the positions of the particles. A T-matrix is used to
characterize the response of individual ferrite particles to any incident
excitation. An snalytical expression is obtained for the complex peopa-
gation tin the P in the long wavelength limit.

In addition to presenting results for a variety of materials including Ni
ferrite compounds, it is shown that a particular set of axsumed values of the
complex magnetic permeability and dielectric function leads to very good
agreement with the experimental data of Ueno ef al [2].

I. INTRODUCTION

HE HIGH DIELECTRIC and magnetic loss tangents

of the magnetite Fe,O, makes it an ideal candidate for
applications to microwave absorbing materials. Generally,
the Fe,O, particles in the form of spheres or cylinders are
held together by a binder such as PVC. Since weight and
the structural integrity of the composite is also of concern
in many applications, it is desirable to choose the optimum
volume ‘fraction of Fe,O, particles and adjust_the shape.
size, and distribution of particles to obtain the required
mass density and microwave absorbing properties. A reli-
able theoretical model that can predict effective properties
for various values of these parameters is an economical
way to arrive at the optium configuration. Such a model is
proposed in this paper.

Since the use of ferrites in microwave absorbing com-
posites is relatively new, measured values of the electrical
and magnetic properties of ferrites are difficult to find in
the literature. For many types of ferrites, it is hard to
measure the complex permeability and the complex permit-
tivity due to the high electrical conductivity of Fe,O,. For
some materials, such as the Ni ferrite compounds, one can
find measured values of complex permeability but not of
permittivity. This may be due to the fact that completely
different techniques are called for the two measurements.
One may refer to Lax and Button [1}.

Recently, Ueno er al (2] have reported experimental
results for iron oxide (Fe,0,) impregnated plastics (PVC)

Munuscript received March LK, 1983 revised September 235, 194S
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Electromagnetic and Acoustic Research, Department of Engneering Sci-
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Quks. CA 911360
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in the 0.1-10-GHz range of frequencies. Plots of u’, u”, €',
and ¢” of the composite are plotted as a function of
frequency. The reflection and transmission coefficients of
the composite slab for various angles of incidence are also
plotted as a function of layer thickness as well as angle of
incidence. The only other reference that provides some
useful information on the material properties is the book
by Smit and Wijn [3]. We believe that there may be other
sources, especially in the internal research reports of vari-
ous industrial and government research laboratories, that
may be of a proprictary nature and, hence, not easily
available.

The plan of this paper is as follows. In Section 11, the
multiple scattering formalism is presented. In Section 1II,
long wavelength approximation are invoked to obtain a
closed-form solution of the dispersion equation for a ferrite
composite. The equation can be explicitly solved for
spherical particles, for arbitrary concentration within the
limitations imposed by the quasi-crystalline approxima-

“tion. Analytical expressions for the effective complex wave- .

number are presented. In Section IV, the calculations and
results for Fe,O, composites are explained and the com-
parison with the experimental results of Ueno er ul is
discussed. A short summary and conclusions end the paper.

I1.  MULTIPLE SCATTERING FORMALISM

Consider the propagation of plane-harmonic electromag-
netic waves along the z axis of an xyz coordinate system in
a medium referred to as the host or matrix characterized by
real values of the dielectric function ¢, and magnetic
permeability u,. Embedded in the matrix is a random
distibution of randomly oriented scatterers characterized
by a complex permittivity ¢, = ¢{ +i¢;’ and complex per-
meability u, = u} +ip}. In this paper, the time dependence
e "' is assumed throughout. The number of scatterers N
and the embedding volume V are both large, but when
N/V = n,, the number density is finite.

The total field at any point in the host medium is the
sum of the incident field and the fields scattered by all the
scatterers. The field that excites a given scatterer (say. the
t1th scatterer), E'. however, is the incident field L'"‘ plus
the fields scattered from all the other scatterers E)‘
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where 7 and 7 are the observation point and the position
of the jth scattcrer, respectively. Expanding ull the ficlds in
terms of vector spherical functions and employing the
translation theorem and the orthogonality of the basis
functions, we obtain (see Varadan er a/. [4) and Bringi er al.
(5D

n+l et
a(n+l) 2

> |8 (7 - 7)

J=1 n =0 me=-n

)
”

[8'«‘[ +n(n+1)5, . 11

+crvem (7 -7)] (2)
2n+l et
)y n +n(n+1)8
(‘n "(n+‘)l 2[ [sm.l "(" ]) ™. l]
> [Brvcmm(n-r)
j=l =0 m=—u
+ B (7 - 7)) (3)

where ¥’ denotes j#1, 8, is the Kronecker delta, and &
is the wavenumber in the host medium. B and C; are
the scattered field coefficients, b7 and ¢ are the exciting
field coefficients, and B."™ and C'™ are the functions
resulting from the translation theorem of the vector spheri-
cal functions.

Now we introduce the T-matrix of a single scatterer
which relates the scattered fi€ld expansion coelficients to
the exciting lield expansion coefficients as follows (see, for

example, [6]):
B TII TIZ b b
(C) [Tll TZZ (C) (T)(C)

For aligned identical scatterers, if the T-matrix is com-
puted with respect to the xyz axes, then the T-matrix of all
N scatterers is the same. However, if the orientation of
each scatterer with respect to the xyz axes is defined by the
Euler angles a,. 8,. v,. then the T-matrix of the ith scatterer
is a function of the Euler angles and is defined by

T=DiD ' (5)

where T is the T-matrix of a scatterer evaluated with
respect Lo the set of coordinate axes natural to the scatterer
( XYZ axes), and s independent of position and orienta-
tion and is. hence, the same for identical scatterers. D is
the rotation matnix given by Edmonds {7]

D! (a.B.y)=e™d" (B)e™"

(4)

(6)

where
(n+m)(n-m) |'/? Bymm
d” = 08 —
m (3) [(n*m’)'(n—m')' (LOSZ)
. B m-om o ”
. Slni) p'('n_mm L3 M)(COSB). (7)
_,";;? ‘- .,',";,\{ .J,-.'\ RS \1‘
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In (7), P is the Jacobi polynomial, which can be expressed
in terms of the associated Legendre polynomials (see
Edmonds {7}).

The T-matrix averaged over all possible orientiations of
the scatterer may then be written as

(T wm) = %fz'daj:'dy'/;'dﬁ sin 8
[ D (@B Y) T o,

my
(D7) 2w (@, B.7)]
T . .
- 2n+1 ,,,I_Zm) Tnm,.n’m,smm,smlm'snn' - Tum.mu'

(%)

If (2) and (3) are multiplied by (T) from (8), we obtain a
set of coupled equations for the scattered field expansion
coefficients which are averaged over all possible orienta-
tions.

It remains now to perform an average over all possible
positions. To this end, one can introduce a probability
density function of finding the first scatterer at 7|, the
second scatterer at 7, and so forth by p(7, /... 7y).
which in turn may be expressed in terms of conditional
probability p(7,|7), of finding a scatterer at 7, if a scatterer
is know to be at 7. The two-point joint probabhility func-
tion p(F[r) is in turn defined in terms of the radial-
distribution function g(|7, - 7|) as follows:

7 - 71> 2

|—)_ lVS(la‘;:l)'

0. 7~ 7l <2a

(9)

where V is the large but finite volume occupied by the
scatterers and 2a is the largest dimension of the scatterer.
Here, the scatterers are not permitted to penetrate one
another. Several models of g(r) are available and are
briefly outlined in Bringi er al. [8). The radial distribution
functions obtained using the sell-consistent approximation,
which is a linear combination of the Percus-Yevick and
hypernetted chain approximations, seem 1o be good for a
wide range of concentrations, and are also used in our
computations here. Improved forms of g(r) as outlined by
Twersky (9] for nonspherical statistics can also be em-
ployed if it can be extended to higher orders of concentra-
tion. Performing the configurational averaging and invok-
ing the quasi-crystalline approximation as outlined in
Twersky [10] and Varadan er al. {11], [12]. We obtain the
average scattered field coefficients as follows:

(8] [(r (r) (v
(|71 (T || ()

(10)

o
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where

(¥nm)

i

2m+1 e
T a(m D) 2

- [8,,"_1 +n,(n + 1)8,,.__1]

1N = m
’ 7 Iz-’l "12-0 my 'z-nzfy'[<8"l’m1> B,:I”"':z(;; - ;;)
+(ChmyCm(R=7)] (=70, (11)

and

(Xnim) =

2n 41 e
"
nl(n1+l)‘ 2 |

1 N ® "
¥ 712"1 "zz'o "'z"z"'z
+< (12)

In (11) and (12), ¥V’ denotes the volume of the medium
excluding a sphere of radius 2a. For identical scatterers
L).,=N-1 and 4n(N-1)a’/3V=c, the volume con-
centration of *“*scatterers” provided N is large enough.

To find the average propagation constant K for the
composite medium, we assume a plane-wave propagation
with effective wavenumber K in the same direction as-the
incident wave direction with unknown amplitudes Y and Z

(Bim), = Yome' -
(C,:,,,)i - Z,,,,e"z‘7'.

8m,.l+nl("l+l)8m‘.-l]

L[ B4ms)

By (7 - 7)| (17 - A .

mmy

Com (7= 7))

"

Choms)

nym,

(13)

Equation (13) is substituted in (10) and the extinction
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In (14) and (15), j, and h_ are the spherical Bessel
functions, and the pnimes denote differentiation with re-
spect to the argument. The expressions for “a™ and “4”
occuring in (14) are related to the Wigner 3— j symbols
and are given by Cruzan [13]. Setting the determinant of
the coefficient matrix generated from (14) to zero, we can
solve for the average propagation constant K = K, + iK,.
The real part K| is related to the phase velocity. while the
imaginary part K, is related to the coherent attenuation.
For ferrites, it is not possible to obtain the values of p and
¢ separately from a knowledge of the wavenumber alone.
For nonmagnetic materials with p = p,, this is possible.

I1I. ANALYTICAL SOLUTION FOR THE EFFECTIVE
WAVENUMBER IN A FERRITE COMPOSITE FOR
MICROWAVE FREQUENCIES

Equations (14) and (15) of the previous section can be
solved numernically as illustrated in several papers by
Varadan et al. [11], [12). For the problem at hand, it was
more convenient to solve the truncated set of dispersion
equations analytically. At frequencies in the gigahertz range,
the wavelength in PVC is of the order of several miilime-
ters. Radar absorbing composites have to be designed such
that enough attenuation and reflection reduction is achieved
in a coating which is a millimeter or two in thickness. The
ferrite particles are much smaller than a millimeter in
diameter. Thus, one can safely solve the dispersion equa-
tion in the long wavelength approximation.

Retaining only the dipole terms in (14), we obtain

(T (JHy + 3JH,) -1 1(T%),,JH,

theorem can be invoked to cancel the incident wave term n 2 =0.
on the right-hand side of (11) and (12). The resulting HTH)uJH, (T )“(JH°+%"H2)-I
equations are (16)
Imy + ) ) ) " ny
Yom = L L L X (-ypmummme, . (Ji),
q=|n=nin=0ny=0me=—n m=-n,
'{Y,.,,..,[<T”),,,,,.,,ma(nz,n,,q)a(m,‘nzl— my, miq)
(14a)
- (T‘z),,,,_,,,..,b("z- n,,q)a(my,nyl—my, nlq,q -1)]
+ Z»zm, [<Tl2>nm.n|m,a(n2' "l'q)a('"Z' nZl— m,, nllq)
- <Tu>nm.n|m|b(n2' ny, q)a(m,, nal—my, niq,.q- 1)]}
and The hole correction and the correlation integral of (15) can
z,. (14b)  be written analytically as

where (14b) can be obtained (rom (14a) by replacing (T''")
and (T'?) by (T?) and (T®), respectively. The term
(JH), is given by

(JH)y= )2[2kaj,(2xa)h;(2ka)

6¢
(ka)’-(Ka
~2Kah (2ka) j;(2Ka)]
+24c/wxz[g(x)—1]

1

h (2kax) j,(2Kax)dx. (15)

-------------

"
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6¢
JH, = ————5
(ka) - (Ka)
—2Kah,(2ka) j!(2Ka)]
+24c/ax2[g(x)— 1]
l

-h,(2kax) j, (2 Kax)dx.

(2kaj,(2Ka) h,(2ka)

(17)

For spherical particles, the dipole term of the T-matrix
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.- takes the form
T (™) = { B [2)12 = €k20) jua] = paa[240 = (kia) ]}
~ " {#1/11[2"12‘(/‘1“)’721]'Fz"nz[zju"(kla)jn]}
: . oy . G , .
- #Ju[zln —(kla)jZI] - Fz_./n[zhz - (kzﬂ)lnl}
= (TH) = (18)
t: {#l lz[zlu (k a)!n] I"z ok 111[2"12 (k,a) hzz]}
According to the symmetry of the T-matrix for a spherical where n=(K,/ko)+i(K,/kg). The reai part of 7 enables
- scatterer us to calculate the effective index of refraction, while the
attenuation in the composite is inferred by the imaginary
e (T'?),,=0 and (T%),=0. part of 7.
~.:: The parameters in (19) are now defined as follows:
hl Here, the following notation has been used: o= cz(U— YZU—27V)/yz y o= c2(27U YV -y )/},:
- Jum = Jo(k,a) spherical Bessel function $i=C( BT + f)/-vl §2=C( [37 - ?)/-"l
;_'..’ $y=C(YC+ D)/y fc-C(AY‘”)/.";
h,, =h(k_a) spherical Hankel function, U=B-C-AD
o 13 Ved C+B-D
Y : mom=1C 4{=2(By+A4), B=2(Ay~B),
and the subscripts 1 and 2 for & (or subscripts 1 and 2 for ¢ =2(Cy—-D), D=2(Dy+C)
b u and ¢) represent the properties of the scatterer and the ., , , o o
} "‘ matrix, respectively. A—[(“'—“z)(2“1+“')+(“ - )(2“2+“' ]/A
b rrln the microwave t!’reqfucn'cy range, the sc})\lju:o_n to the = [(wy = w7 @uy + ) = (= w3) Qus + 6] /A
P effective properties of a ferrite composite, which is a mix- - _ _ . ,
‘.. ture of ferrite particles embedded in a plastic matrix, is [(ef = e1)(2e5 + €)) + (€ = ¢7)(2e5 + ¢}) )] /A
‘. givcn as -[(Q{'-(z)(zlz"'(l) (( (z (2(2+(|)] A
f N . I
2 ye 4o -1~ ~5)+di(v =, -, + BDw + BAw = 2wclUB/y, + 2wcBUV/ y,)
s (0 —2+25, +23,) + i [ + 28, + 284 + 4PAw + 4BDw + (4Bwe Uy 3,)] (19
).
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TABLE(
Case 1. Assumed properties for r-,o‘ which satch vell vith the experimencal
data (l'.l'. ﬁ" lﬁ'. and ul" for r.jo‘ can be lound in Pigure 1).
Case 1. Propercies of cese 1, but reduce u by 202.
Case }. Properties of case L, buc treduce w by 33 132,
Case 4. Propercies of Case 1, but {ncreass g by 201,
Cass 5. Propercies of case !, bdut reduce clby 201.
Case 6.

Q ia case 1, bdut W 38 for xu’-zo‘ (d=6.18) .

The properties for PVC
(i -2, t; .0
{values are relative to free space)
vy~ b u; .0

8 = (2w + )+ (2pg + )’
&= (2¢) + ¢;)2+(2('2'+ 1 2
v = (X =3x3X;) /(X3 -3X,X;2)
n=(1+y?)
W=(1-c)/(1+2c)}
Y= )‘12
B=(X3-3X,X%)/3
X, =Re(k,a)
X;=1m(k,a)
2= sy +ipy
€ =¢) +icy
172

ky=w/(ns,)

"
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TABLE il
frequancy(CHz) Cane ‘1/"0“0/‘1) Kzlko
1 6.43(0.156) 0.62
0.6 2 6.12(0.163) 0.62
) $.87(0.170) 0.56
. 6.68(0.150) a.81
3 6.09(0. 164) 0.62
6 6.16(0.162) 1.33
€xp. 6.48(0.154) 0.60
i 6.37(0.157) 1.02
2 6.07(0.185) 1.08
1.0 ) 5.83(0.171) 1.08
. 6.64(0.151) 1.0
s $.03(0.166) 0.98
s $.41(0.183) 1.70
Exp. 6.26(0.160) 0.93
1 3.00(0. 200) 1.93
o 1 4.58(0.218) 1.99
s ) +.33(0.230) 2.02
‘ $.23(0.191) 2.09
3 4.73(0.211) 1.91
6 4.24(0.236) 2.16
Exp. $.07(0.197) 1.66
1 3.90(0.236) 2.13
‘o 2 3.47(0.288) 1.99
: ) 3.19(0.313) 1.a7
. 4.02(0.249) 2.21
s 3.63(0.27%) 2.01
6 3.82(0.262) IRY
xp. 1.86(0.259) 1,89
L 2.86(0.330) 102
2 2.61(a.38)) .29
5.0 3 2.40(0.517) 1.1
B 2.99(0.134) 1.48
s 1.69(0.372) 138
s 2.91(0. J4s) 1.8
xp. 2.99(0.334) 1.6
{ 3,170,318 .99
: 2 2.91¢0. J4%) 0.91
l0.0 ) 1.7100.369)  0.as
. 3.32(0.301) 1.0
3 2.98(0.136) 0.9
6 3.63¢0.330) t.08
2xp. 3.10(0.323) 0.93
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Fig. 7. Reflection coefficient versus {requency for Fe,O, composite slab
for different slab thicknesses.

IV. RESULTS AND CONCLUSIONS

The complex effective wavenumber K = K, +iK, as
given in (16) was computed as a function of frequency for
Fe,O, particles dispersed in a PYC matrix. The dielectric
constant of PVC was taken to be ¢, = 2¢q and p, = p,. It
was assumed that both ¢, and g, are nondispersive and
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Fig. 8. Normalized value of the real part of the effective wavenumber
versus frequency for spherical and spheroidal Fe;O, particles in PVC.
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Fig. 9. Attenuation versus frequency for spherical and spheroidal Fe;0,
particles in PVC.

nonlossy at the frequencies of interest. As mentioned in the
Introduction, measured electric and magnetic properties of
Fe,O, particles in isolation are not available in the litera-
ture. The high conductivity of Fe,O, is cited as reason for
the difficulty in measurements [14]. Measured values of the
composite properties for 70 percent volume fraction of
Fe, O, particles in PVC have been reported by Ueno et al.
[2].

They have presented measured data for the real and
imaginary parts of the dielectric function {¢) = (') + i(¢'")
and (p) = (u’)+i(p"”) as a function of frequency.

In our calculations, we had to assume the properties of
¢, = ¢ +ief’ and u, = pj + iuy that were reasonable [3) and
lead to approximate agreement with the measured values of
Ueno et al. [2] for the composite properties.

For most ferrites (iron oxides), in the frequency range
between 0.25 ~ 2-3 GHgz, the imaginary part of the mag-
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netic permeability displays a charactenistic peak due to the
natural ferrimagnetic spin resonance of the iron oxide. It is
this high value of py and the high conductivity of the
ferrite that results in a large €]’ (imaginary part of the
dielectric function) that leads to the high absorption of EM
waves. At frequencies lower than 0.5 GHz, ¢} increases
with decreasing frequency while uy decreases with decreas-
ing frequency. Thus, there are two loss mechanisms present
that span the very low to high frequencies leading to the
desired absorption. In Figs. 1 and 2, the assumed values of
u, and ¢ for Fe,O, are presented as a function of
frequency. In Figs. 3 and 4, the computed normalized

values of the real and imaginary parts of the effective

wavenumber in the composite are plotted and compared
with the experimental values.

In Figs. 5 and 6, the real and imaginary parts of the
effective wavenumber are presented and compared for six
different cases. Case 1 is the same as the computed results
of Figs. 3 and 4 with properties as assumed in Figs. 1 and
2. In cases 2-6. ¢, and p, were varied as explained in
Table I. In Table 11, the effective wavenumber normalized
by the free-space value is tabulated for the six different
cases at selected frequencies along with the measured val-
ues. It was concluded that if the measured values as
reported by Ueno et al. [2] are correct, then the values of ¢,
and p, as shown in Figs. 1 and 2 are expected to be quite
close to the actual values for Fe,O, in isolation since they
provide the best [it with experimental data.

It can be seen that case 3, which corresponds to a
decrease in the valug of p, =} +ip) by 20 petcent, leads
to much lower values of absorption, indicating the im-
portant role of uy on the imaginary part of the effective
wavenumber in the composite.

In Figs. 7 and 8, the reflection coefficient of a slab of the
Fe,0, -PVC composite in free space is plotted as a func-
uon of frequency for three different slab thicknesses. The
reflecton coeflficient generally decreases as a function of
frequency but 1s nevertheless high at the lower frequencies
due to the high-volume fraction of Fe,O,. It is suggested
that the composite should be constructed in a graded
fashion so as to reduce the imitial reflection by matching its
impedance to the free-space value.

Finally the effects of a nonspherical shape was studied
to a limuted extent. In Fig. 9, the real and imaginary parts
of the wavenumber for disk-shaped particles (oblate
spheroids of aspect ratio 4:1) that are parallelly oriented
with waves inaident along the axis of symmetry are com-
pared with those of spherical particles. For this particular
orientation, the attenuation produced by the spherical par-
ticles is considerably less than for the disk-shaped particles.
Calculations are in progress for needle-shaped particles,
parallelly oriented or randomly oriented.

If one is interested in specific materials for which no
measured spectra of the magnetic and electrical properties
are available, 1t may be possible to arrive at reasonable
values ¢{, ¢}’. 4}, and u7 by fitting them to simple equa-
tions that involve the characteristic resonance frequency or
relaxation ume of the matenal and the asymptotic values
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of ¢ and p. These values will have to be obtained from
measurements, but these are easier to measure than the full
spectrum.
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Acoustic response of manganese nodule deposits

Y. Ma*, A. H. Magnusont, V. K. Varadan®*, and V. V. Varadan*

ABSTRACT

Backscattered acoustic intensities are studied analyti-
cally for manganese nodule deposits excited by a nor-
mally incident plane wave. The primary objective is to
use this remote-sensing technique to infer the nodule
concentration as well as its size distribution from the
frequency spectrum of the acoustic response.

For sparse distributions of scatterers, multiple scatter-
ing theory has been used to obtain the coherent reflec-
tion and transmission coefficients from the sea floor
covered with manganese nodules. The derived equations
can also be used for densely distributed configurations
when considering higher-order statistics between. scat-
terers. The validity of the formalism is examined by
using the principle of conservation of energy and con-
sidering both the coherent and the incoherent inten-
sities.

Numerical results of acoustic intensities are highly
frequency-dependent, especially when the nondimen-
sional frequency ka is greater than 1. The strength of the
acoustic intensity is proportional to nodule con-
centration. Different size distributions of nodules can be
distinguished through use of the intensity measure-
ments. However only a minor difference is observed in
the low-frequency range between uniform and Rayleigh
size distributions.

INTRODUCTION

Manganese nodules, which also contain other minerals such
as nickel and copper, are of economic importance due to their
natural abundance on the deep ocean floor. Because 70 to 80
percent of the metals they contain are currently imported into
the United States, Graflf (1984) and Spiess et al. (1983) predic-
ted that the mining and exploration of manganese nodule
deposits will become increasingly important and feasible. The
physics of nodule deposits was discussed in Glasby (1977) and
Greenslate (1977). Magnuson et al. (1981, 1982) described how
an acoustic remote-sensing technique could be used to infer

the area weight density (tons of nodule per unit area) and the
average nodule size, which, in turn will indicate the appropri-
ate type of mining equipment to be used.

Remote acoustic sensing techniques provide an economical
way to infer the presence and abundance of manganese nodule
deposits on the deep ocean floor. The coherent acoustic reflec-
tion from the ocean bottom is analyzed over a nondimension-
al frequency range ka = 2rfa/c from 0.2-5.0, where f is the
frequency in hertz, a is the mean nodule radius, and ¢ is the
acoustic wave speed in water. Previous studies were corifined
to an analysis of the coherent reflectivity only and provided
only limited information about the nodule distribution.

" Measurement of the incoherent intensity provides additional

information. An improved theoretical model is presented for
determining both the coherent and incoherent intensities.

Acoustic intensity measurements are common in under-
water acoustics. To compare the field measurements with the
theoretical calculations, the incoherent intensity must also be
considered because it becomes significant as the sounding fre-
quency increases. An intensity calculation based on the energy
principle for nonabsorbing scatterers, which was investigated
in Twersky (1957), is discussed here, and conservation of
energy is used to check the numerical accuracy. The study,
although, restricted to sparse nodule distributions so that
higher-order scattering can be neglected, nevertheless includes
some interaction among the nodules. The use of multiple scat-
tering theory to accommodate denser cancentrations of nod-
ules is currently being investigated. In addition, any given size
distribution of these nodules can also be considered. as de-
scribed in Ma et al. (1983). Calculations are presented here for
uniform and Rayleigh size distributions

REFLECTED AND TRANSMITTRv FIELDS

We consider a planar distnbution of nodules modeled as
elastic spheres suspended in water. The nterstutial space be-
tween the nodules and the region below the nodule field s
assumed to be occupied by water. This i1s an approximation,
but the soft, water-saturated mud 1n which the nodules are
actually distributed has an acoustic impedance that closely
matches the acoustic impedance in water relative to the
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| LIST OF SYMBOLS

‘ A = Area
a = Size of nodule (radius)
¢ = Concentration (Nra?/A)
¢, = Unit radial vector in spherical coordinates
€, = Unit vector in the positive z direction in
rectangular coordinates
I f(6) = Scattering function
g = Density ratio
I H = Depth measured from receiver
h") = Spherical Hankel function of the first kind
Im () = Imaginary part of ()
i = Imaginary unit (i = —1)
Ja(*) = Spherical Bessel function
k = Wavenumber
N = Total number of scatterers
ny, = Number density {N/A)
O(-) = Order of (+)
P,(cos 8) = Legendre polynomials
p = Pressute
R = Reflection coefficient
Re (-) = R&al part of (-)
r = Distance between nodules and the reference
origin ’
T = Transmission coefficient
U = Total scattered field
u = Individual scattered field
v = Velocity vector

x, y, Z = Rectangular coordinates
¥.(+) = Spherical Neumann function
8 = Scattering angle
® = Angular frequency
Q = Solid angle
p = Mass density of fluid medium
o = Scattering cross-section
V = Gradient operator '
v = Wave function (acoustic potential)
{+» = Configurational average
{+) = Configurational average holding ith
scatterer fixed
(> = Configurational average holding jth and
kth scatterers fixed

SUBSCRIPTS

L = Longitudinal wave |
m, n = Indices (integer) '
T = Transverse wave ,‘

SUPERSCRIPTS

inc = Refers to incident wave i
* x= Complex conjugate ‘
+ =z > 0 plane i
— =z < 0 plane |

manganese nodules that are highly reflecting (high-impedance
mismatch to water). The theoretical model of the-problem is
based on the earlier work of Twersky (1957) and Foldy (1945).
In contrast to Twersky, who considered rigid spheres, we con-
sider elastic spheres and retain all necessary terms in order to
model the field scattered by a single nodule exactly.

Plane harmonic waves of frequency o are incident normal
to the nodule field. The z-axis points upward {rom the nodule
field at z = 0. The average field above the nodule distribution
is the sum of the downgoing incident wave of amplitude ¥,
and upgoing reflected wave whose amplitude differs from the
incident field by the reflection coefflicient R. In the region
z < 0, there is a transmitted field of amplitude T¥,. The re-
flected and transmitted fields are due to scattering from the
nodules that includes multiple scattering effects. The average

yet to be determined. The details of determining the scattered
field are given in Appendix A.
The total field above and below the nodule field can be
written as
N
WR) = ¥"™(R) + ¥ u}(R —r)=¥"(R)+ UYR), (I

J=1

where R is the field point which in our model is also the
location of the receiver and transmitter. In equation (1) v s
the field scattered by the jth nodule located at r, on the z 0
plane, and N is the total number of nodules distributed overa
large area A such that N — x, A— x, but ny = N/4 (the
number density of the nodules) is finite.

We are interested only in the ensemble averaged fields, be

Wy Ve Wg¥™ d

P

field on the plane z = 0 must be independent of position. cause the position of individual nodules does not affect the
Twersky (1957) approximated this field as the sum of the inci- response to a great extent. The configurational average (Ap-
dent fields and the mean value of the reflected and transmitted pendix B) of equation (1) over all possible positions of the
fields evaluated at z = 0. Foldy (1945), in his description of the nodules weighted by the joint probability distnbution function
multiple scattering of waves by a random distribution of p(ry, 5. ., ty) and the size distiibution (unction g(a ) 1s de-
spheres, assumed that the incident field that excites each noted by
sphere is simply the average field in the medium. This has - - .
o come to be known as Foldy's approximation and leads to a (Wa) = Jda, ’ day | dr, ‘ dry i
- simple equation for the effective propagation constant in the - - v A
- composite medium. We emphasize that this is not a single A
scattering approximation. In our model we used Twersky's < WRipte, 1y, ryo@ady L de ﬁ
approximation for the average field at z = 0 and took this to - 1
"‘ be the field exciting the nodules in the spirit of Foldy's formal-
1sm. The fields scattered by the nodules can be expanded using The incident field s independent of the nodule incateas {
outgoing spherical functions with coefficients that depend and we concentrate on the average. total scattered hed Ac
upon the reflection and transmission coeflicients which have cording to Foldy (19451 the field exciting each nodule may
-
1
.
- LA - ‘.
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ipproximately described by the average total field given in
squation (1) From Appendix A, we write

WiR =)= Fla, R —r)¥Nr) (3

where

2D R 8). (4
Fla,,R—r) = ?m‘ kIR =1 )p,(cos 8). (4)
The terms in equation (4) are explained in Appendix A. In
equation (3) (*¥) (r)) 1s simply the average field evaluated at
1
The ensemble average of equation (3) may be written. Note
that 1t depends only on the location of the jth scatterer and
that

i 1
Jd’z' ‘J“I'wl’"hrz-"'-N)"P(r,)“;- (5)

where pir ), the probability of locating a nodule at r;, is simply
i 4 for a random distribution. Averaging equation (3) yields

< 5 u;> =, f FR — r)(¥>(r,) dr,, ©)

i=

where

FIR—~r)= J‘F(a,. R - r)qta) da;, )]

and g(a) is the size distribution function obtained from ana-
yar.g pictures of nodule deposits on the sea floor. This is used
w describe statistically how different nodule sizes are distrib-
uted on the sea floor.

The average field should depend only on the angle of inci-
dence 1 and the height of the recetver-transmitter. Introducing
wefection and transmussion coefficierns,

CPIR)Y = W(R) + R[W'*<]*, >0 (8)
nd
CPI—R) =¥l + T), z2<0, 9)

ahere the complex conjugate denotes an upward propagating
«ave (Figure ). Thusf

W om Woe (10)
hen

(W, = Wyle "+ Ret?, >0 (1)
and

W om Wl + The M, : <O (12)

*¢ note that the average field at z = 0 1s independent of the
--. woordinates The average field 1s constant and can be
s~tren (following Twersky. [957) as

W= W, s WoR+T)2, 1m0 (13)

“iaation oL 3s used 1n equation 16) as the field incident on a
weieat e For the total average scattered field, we obtain

=Y, ) PR =)t + (R + 2] dr,

TR e = L

(14

For remote sensing the receiver-transmitter is in the far field of
nodules, such that k[R — r;| » 1. Then we use the asymptotic
form of the Hankel function in equation (4) as given in equa-
tion (A-10) and obtain

eull-rl
IR—~r|
x fO[1 + (R + T)/2), (15)

® 2
(U)=no‘l‘oj rer do
0 0

where
and we use cylindrical polar coordinates so that
dr = r dr dd. (16)
From Figure 2 we note that
{R —r| = H/cos 0. a7

We further note that the integral in equation (15) is indcpcm
dent of the angle ¢ and hence

(—1)*P, (cos B)q(a) da,

wi___
KU> = 2nrn, ‘*‘oJ; SO [1 + (R + T)/2]e" /et

x {—H tan 6/cos 0) d9. (18)

To solve equation (18) for kH > 1, the principle of stationary
phase (Lamb, 1932) is used. The solution can thus be written
in terms of the stationary phase angle y as

CUY = Qrng i¥o/k)[1 + (R + TY/2]S(v)e* 5=, (19)
The stationary phase angle v is obtained by solving
d(ikH/cos 8)/d6 = 0, (20)

and found tobe y = nx(n =0, 1, 2, ...) for this case.

‘/\pinc
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Fi; 1 The average scattered field excited by a normally inci-
dent plane wave
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From equation (18) it can be seen that (U) can be salved
by integrating 8 from 0 to x/2. The only appropriate phase
angle in this region is zero. Therefore, for z > 0, the total
scattered field (U * is found to be

CUY* = 2rng i¥o/K)(1 + T/2) £O) + (R/2) f(m))e™™
= RW, ¥ 2y

In equation (21), instead of f(0) multiplied by the reflection
cocflicient R, the scattering function at 0 = x (which is a com-
pensation angle of zero degrees) is used. The reason is that the
transmitted and reflected waves are different in propagation
directions by an angle of 180 degrees. This is also clear from
Twersky (1957). Similarly,

CUY™ = (21n i¥o /KL + T/2)f(x) + (R/2)[(O)]e ¥
- TWye 04 22)

The reflection and transmission coefficients, the two un-
knowns, can now be solved simultaneously from equations
(21) and (22) using Cramer’s rule. The result is

R =Bo/[1 — B, + (B2 + BE)/4), (23)
and
T = (B, — (B2 + B/2VLL - B, + (B2 + BDM].  (29)
where
Bo = 2rn, M/k,
and ’

Bl - 2“"0‘:;:(;)/ k.

Substituting the expressions for R and T into equations (21)
and (22), respectively, we obtain

CU>* = [Bo + Bo By + O(B)]wo ™, z>0 (295

and

RECEIVER z

O - O o
ST TR o
u\ ] A s y
(@ = '(3"\‘,.".i o
O x o

11, 2. Geometry of scattering from nodules on a plane.

e .r«".r\'“'.ﬂ'ﬁa .

S T bty S S

U™ = [B, + (B} + B3)2 + OB lwoe ™™,  z<0. (2

The first terms on the right-hand sides of equations (25) and
(26) are due to a single scattering whose excitation is the
incident plane wave y™° only. This can be obtained by substi-
tuting y'*° at z = 0 for {w(r))> in equation (6). The second
term is obtained using the self-consistent approach. This i
essentially Picard's process based on initially approximating ¥
by the incident field y'*< plus the single scattered wave, which,
in turn gives a series of orders-of-scattering for v in terms o
single scattering functions. Foldy (1945) introduced this
method to expiain the orders of scattering because the higher-
order scattering is approximated by iteration using the lower-
order scattering terms. The idea is that the average scattered
field CU)* (or (U)7) can be obtained from a Neumann serics

CURY =uf + T u, )
m=2
where
ul = n, J.{[u;_l(rl) + up_((r)Y/2}(F(R —1)] dr,,
uy =Bo‘Vof“"- z2>0,
and
uy = Byoe ", z<0.

It can be seen {rom equation (27) that m = 1, 2, and 3 corre-

spond to single, double, and triple scattering, respectively.
Generally speaking, for a sparse distribution of nodules, ie,

ngv « | (ngu = C = nyxa?) in equations (25) and (26) the suc-

cessive terms are smaller compared to the previous terms

Therefore, the higher.order scattering containing a high-order
value of ngu can be neglected in the approximation of the
average scattered field U ).

CONFIGURATIONAL AVERAGE OF THE SQUARE
OF THE TOTAL FIELD {V?)

Because nodules are randomly distributed on the sea floor,
their positions are not prepared in advance, we have no in-
terest in studying wave scattering by one particular distn-
bution. Instead, an average picture better describes the noduk
field. We define “coherent scattering™ or “coherent propags-
tion” only as an average over the ensemble of configurations
which are, in the present case, different top views from areas
covered with nodules. When an experiment has been per-
formed on a particular configuration, we can estimate the
properties of the average over an ensemble with a high prob
ability of accuracy. In experiments several samples are used to
guard this probability. Interested readers can refer to any text
on statistical mechanics for fusther elucidation. Because the
nodules are randomly distributed, the scattered field U is not
constant: scatterers make an otherwise homogeneous medium
inhomogeneous. The magnitude and phase of U will fluctuate
in a random manner Thus the total field at R, i.e., w(R), is also
a random lunction and can usually be divided into average
field ¢y ) and the fluctuating field .

The square of the magnitude of the coherent field | (y)1* s
the coherent component. The average of the square of the
magnitude of the incoherent ficld is the incoherent component
The reason for introducing the incoherent field here is that the

3




Ga- Ba® Bod Bl ad £d mea o don Bia Bie Japte abe G0 8te S e il Al vall tall all Nul el dafh Yadh Sl oh gl aid otk okl -k i ali- ohe JAE" ol o av et abavt ey b St _hat el Sl ek S L N e Y

i
ﬂ

Acoustic Response of Manganese Nodules 693

’
v

F O

“incoherent intensity,” which is quadratic in the field ampli- or the average of the jth scattered field multiplied by the

tude, must be computed separately. This is because the
averaging process will not commute with the nonlinear oper-
ator of squaring the absolute-magnitude of a field quantity.
These values correspond to those which would be obtained
experimentally ‘'by employing amplitude-sensitive and energy-
wnsitive measuring devices. Here the incoherent field is simply
the difference between ({y[>? and {{y)|%. Its usefulness is
explained in obtaining the second statistical moment of a fluc-
wating field in statistical mechanics. This extra information
also enables us to describe the amount accurately, as well as
the size distribution, of an average nodule field which has at
least two unknown physical quantities. This is impossible to
wchieve without solving higher-moment equations. The sum of
the coherent and incoherent components is the average of the
square of the magnitude of the acoustic field, i.e.,

WPy = <> P + v IR, (28)
where y' is related to U as ¢’ = U — {U), or
AW PRy = U = KUY (29)

The coherent component [(y)|? can be obtained directly
from the known coherent field {y) [equation (4)]). It is of
interest here to find the incoherent component {|y’[2) only.
Substituting the expression for U

N
(-5
J=1
into equation (29) yields

Uy =T up T =% up* T <wd Tcup
=Y Tty + T Uyl =TT updiuy.
i D :

PAL I ] -

(30)

The above equation can also be written in the form
Iy 1?> = n} J.J. [N = 1 ufudu/N
— Cuptuy),] dry dr,
+ noj.<|u1|’), dr, 31

by using the definition of the configurational average. To cal-
culate the incoherent component {Jy’| %) in equation (31), two
approximations were also introduced. First, (N — 1)/N is re-
nlaced by unity. This is valid for large N. Second, we use

ufugy e ~ Cupptlu)y, (32)

s suggested by Twersky (1957). For sparsely distributed scat-
terers, equation (32) may be interpreted physically as neglect-
ing contributions to the excitation of a scatterer that arise
from fluctuations of the average radiation that has been scat-
tered by the other scatterers.
It should be noted from equations (30) and (31) that
Z <“/‘ uy)

/’l
an be approximated using [(U)|’. This implies that
Y Y Ku (V) =ik,

1%k &

gradient of the kth scattered field can be estimated as

I§.§<u7 -v.'k“'> ~[KUY*Pe,, >0, (33)

and

2 X <“}. _Vik “x>- ~ KUY, z2<0, (34)

Jok &k

where &, is the unit vector in the positive z direction. Although
the gradient of u, gives the radial direction, the average direc-
tion should be in the z direction. This is to be expected from
the symmetry of the problem (the energy flux is canceled out
along the x and y directions). Both equations (33) and (34) are
thus important approximations in considering the energy con-
servation.

CONFIGURATIONAL AVERAGE OF ENERGY FLUX ¢§)

The energy flux (intensity) is defined as (Morse and Ingard,
1968),

S =% +pv*)/2, (33)

an important quantity in wave propagation theory for con-
sidering energy conservation. Because we define

v=Vy (36)
from potential theory, we obtain

p=iopy 370

‘from the linearized momentum equation. Therefore, the

energy flux can be expressed in terms of y as

. S = iwp(w*Vy — yVy*)/2. (38)
The configurational average of the energy flux becomes
(8> = inp[{w*Vy) — (yVy*>]/2, (39)

and it now contains both the coherent and the incoherent
components. o

Because y = y'*¢ + U, substituting it into equation (27)
gives (taking the real part for magnitude)

wIuo v wl-e wl-e-

(S) = wpk Re[ — +—_TkV<U)
(UY* Wy (U*VU)
et ] (40)

Because the operations of taking the gradient and the integra-
tion involved performing the configurational average com-
mute,

VU = VU, 41

and this relationship has been used in obtaining equation (40).

For scattered waves ¢(S) is expected to be going outward
away from the plane on which the nodules lie. Because the
scattering characteristics are different in the positive and nega-
tive z directions, it is necessary to separate (S) into two parts.
Let

(8)=<(8)", z2>0, (42)

and
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S =87, z<0, (43)

where the expressions for (S)* and ¢(S) ~ are

in¢e, inc lace
(S)* = wpk Re [‘” _‘Z + 3’-— Uy
U oWy (UYL
Tk YT Tk ] 44)
and
_ hc‘w V‘". ~
. (S)~ = wpk Re[ p_—y -—TV<U)
Uy "Wy (U*VU)"
+ ] 5)

By substituting the expressions for y'**, (U)*, and <UD~ into
equations (44) and (45), we obtain

(S>* = mpk[—wg é+Re (gii)] (46)
and
(87 = wpk

x [—wée‘. —(C™ + C ke, + Re(%'&)]'

“n

The second term on the right-hand side of equation (46) [or
the third term on the right-hand side of equation (47)] can bc
further separated into two parts. Thus .

P> <u, A u.> +3 <u, Z u,>’.

(48)

Using equations (48), (33), and (34), the average energy flux
{S)* becomes

(S)* = wpk [wi(~&) +(ICUD* 1R, +1°],  (49)

<U‘VU)‘

and
(8> = wpk[yd(—&,) + w5 (T + T*X-¢,)
+ (1KUY }(~&) +17), (50)
where
IICE DY
J
= Re <—— ARD dr,) (51)
and
BLICE DY
= Re (-:""—k usVu; dr,). (52)

The energy principle simply states that the mean energy

A BN Pt

COHERENT ENERQY ALUX

IMCOHERENT ENERGY FLUX

F1G. 3. Control volume for energy flux consideration.

outflow, for nondissipative scatterers, (rom any enclosed
volume vanishes (Twersky, 1957), i.e.,

J.(S) «dA =0, (53)

To verify this, a simple control volume is assumed (Figure 3}
For the upper half-plane (z > 0), we have

(83" - dA = 0pk[¥i(~&) + (IKUDTPR,] - &,
+ wpk J.l’ - dA. (54
For the lower half-plane (z < 0), we have

J’<5>' - dA = 0pk{PF[(~&,) + (T + T*X—¢)]

+ (1KUY 1)8,) - &,) + wpk jr -dA. (59

Note from Figure 3 that the total average energy flux has two
separate parts. One is the coherent energy flux which ba
components either in the positive or negative z direction, but
not in the x and y directions. The other is the power scattered
into all directions (specified by &,), called the incoherent energy
flux, 1* and I~. After adding equation (55) to equation (54),

J‘(S) - dA = @pk[Wo (T + T*) + [KUY* I + [KU>"1?]
+ wpk Jl - dA. (56
The term uf (V/—ik)u, appearing in I* and I~ in the p p* term

is related to the scattering cross-section o (Appendix A), and
we can show that

jl* < dA = ny Gy, -
(57

J.l’ cdA = no 3"y,

and
IdA =no(8* + 87w} = no a3,
where
G-J.cq(a)da.

. .z.-af..':-r_rf--'
I‘,\_-‘J'-I‘ .\.,»- J‘%-"._-l' .?'J' ‘ .‘,\'u‘,._,/‘\-,\‘,\_,
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> After dividing equation (56) by wiwpk and neglecting the RESULTS AND DISCUSSION
erms |<UD* |2 and [(UD) | ? (of order |[R}? and | T'| %, which ) o
e small compared with | R| and | T}, respectively), we obtain Tolstoy (1983) modeled nodule deposits as hard (rigid) scat-
. terers on a hard ocean floor and considered only low-
- J.<s> <dA = (T + T*) + ny 5. (58) frequency cases. Nevertheless, the results are heuristic and the =
modeling is not realistic. We modeled manganese nodules as o
r. The first term on the right-hand side of equation (58) becomes clastic spheres whose measured properties are shown in Table .
E-: 4 Dy using equation (12)] 1. However, calculations using rigid spheres as nodules are
~- T + T*) = —4nn, Im [T VK. 59 also done for the purpose of comparison. R
( ) o Im L/(mY 9) For a low area coverage of nodules, e.g., 0.2 percent, the -
Substituting equation (59) back into equation (58), it can be nodule field is estimated to have about 150 tons/kxm? nodule -
" wen [by using the forward scattering theorem (Morse and deposit on the sea floor if a 3 cm nodule in radius is assumed.
K- lsgard, 1968)] that Although the area coverage is low, the rather high area weight R
) density proves to be interesting enough to the mining indus- A
. J(S) + dA = no (& — 4x Im (f(x))/k] = O. (60) try. Note that in our calculations the bottom plane reflectivity '
}'.' was taken as zero to model more accurately the nearly acous- -
e Equation (60) states that the energy flux coherently transmit- tically transparent sedimentary bottom in the Central Pacific <
ted is canceled by the energy flux incoherently scattered. This Basin (Mizuno et al, 1976). In Figures 4 and § we present the ‘
. verifies the energy principle for nonabsorbing scatterers as computed values of the acoustic intensities which have been
~. zentioned in Twersky (1957). The proof of the conservation of jivided by pwk'W}) as a function of the nondimensional fre- -
K emergy, in other words, is done exactly as in the case of a quency ka for sparse distributions of nodules. X
sngle scatterer by computing the net flux due to the exciting We see from Figures 4 and $ that the contribution of the .
. ud the scattered fields through a close surface containing one coherent intensity toward the total backscattered intensity is o
_:, watterer. This is also explained in Waterman and Truell's quite small; therefore, it can be neglected for high values of ka.
- paper (1960). As expected, the coherent intensity is a hundred times larger -3
E:‘, 163F ! ' ! ! 3 IO.I 3 T T T T 3 .
W o 1 o - 2
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Table 1. Acoustical properties of manganese modules.

. Wave speeds
Concretion Densit
type C, (mys) Cr (m/s) Cr/Cy (kg/m~)
Pacific 1 950-2 520 16152450 0.83-098 1 910-1 960
nodules {2 350} {2 000]
Atlantic 2 125-3 215 1 625-2 580 0.69-0.80 1 890-2 070
nodules [2 605] (1 980]

(-] = average value

when the concentration changes from 0.002 to 0.02 while the
total intensity is only ten times larger. The size distribution
does not seem to affect the intensity very much. This may be
because it is a Rayleigh distribution and the cutoff size is
limited from the real nodule size distributions. However, this
should be investigated further for an even denser distribution.

The refinement of the elastic sphere model can actually pro-
vide a more accurate intensity calculation because nodules
are, in general, potato-shaped scatterers. Precisely speaking,
they cannot be modeled as identically shaped scatterers. How-
ever, the randomness in shape can also be included in the
configurational average consideration. Varadan and Varadan
(1980) suggested using the T matrix to solve for different shape
scatterers. Future modification of the present model is feasible,
depending upon the required numerical accuracy.

We take into account the interactions among nodules, but -

the higher-order scattering terms are ignored due to the sparse
distribution and low concentration of nodules. For high con;
centrations of nodules, the complete introduction of the
higher-order scattering terms, plus the appropriate distri-
bution function, are required to analyze the problem using
multiple scattering theory. This is currently being investigated.
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APPENDIX A

For an elastic sphere in a luid medium

- YD = g(xa/X§)Y.'.|E
—juD + gix,/x})y,, E

x, = ka, x; =k, a, xy =kra

Jao = Ja(Xh Jar = jaX2h Jas = jalxs)
ho=k, kg

Jur = d[j tkr)]/d[kr], r=a

Jor = dUjatky)idlk]).  r=a

Joy = dljotkp))jdlke],  rma

o = AUtk N (dk, 0}, r=a

(A-1)
Jaz = d2 [ tke )] [dtker))?, r=a

Jus = Ltk 0} [dkr )], r=a
Yar = Yulxy)
yo, = d{y. (kr))/d(kr), r=a
g = density ratio of scatterer to fluid medium,
D = 2nn + D1 = (ay/x3ja2)) = (x3j33) = n? = n + 2,
and
E = an(n + IX! = joa/%3jpaX1 = X3 jas/ias)
— 2x3(x3j7s/iay + 1P 4+ 0+ 2]
x [(1/2h% ~ Wnzlinz = Jaz/inad:
For a rigid sphere in a fluid medium

Co= —Yarlin (A-2)
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4
c -'[ 1,R? dy/1,, - (A-3)

0

I, = Scattered wave intensity,

I; = Incident wave intensity,
G =2n j |p,1* R? sin 0 d6/{p,|?,
o

for spherical coordinates, (A4)
p, = scattered wave pressure,

p, = incident wave pressure,

.
o™ =2n L 1,12 R? sin 8 d6/|p, |2, (A-5)
2

2/n
" =2=n j |p,1? R?sin 6 d6/]p,|?, (A-6)
L]

and

o =0" + 0 = (dn/k?) i (2n + /1 + CY). (A-D)
a=0

Rayleigh size distribution function

q(a) = (2a*/0.743*) exp (—a*/1.48a*). (A-8)
Uniform size distribution function
0, a#ad
- . A.g
q(a) {1, amd o ) )

Asymptotic expression for the spherical Hankel function of
the first kind

AP (kr) ~ kl—’ eirmerimdl - frp L (A-10)

APPENDIX B

CONFIGURATIONAL AVERAGE

Consider N scatterers which are statistically distributed on
i plane. An ensemble of configurations can be characterized
by a probability distribution function of r;,

pP=pry, L2y --os Il (B-_”

Equation (B-1) specifies the probability that the first scatterer
lies in the element of area dr, about the position r, and the
second scatterer lies in the element of area dr, about the posi-
tion r,;, etc. The probability of finding such a configuration
an thus be represented as

pdr dry, ..., dry. (B-2)

Now we introduce a random scalar function F which is a
fungtion of v,, F= F(r,, r;, ..., ry). The configurational
average of F over the ensemble of configurations can be given
in terms of p as

(F)-J’-nJ‘der, dry, ..., dry. (B-3)

N
The conditional probability distribution function

L LSNPS i PN JI JORNON FENV JPNTRN NinA

which is useful in the averaging process, represents the prob-
ability of finding the N — 1 scatterers located at the appropri-
ile intervals of r + dr with the jth scatterer at the fixed posi-
ton r,, In the same manner, the conditional probability distri-
bution function

ELI PPN Y. ST N

=p{r,, 0, ..., LTS JPOTRRIN N TSI LIt

represents two nodules at the fixed positions r, and r, .
According to the law for the conditional probability, it can
be seen that

pr, ey, Ty =ple)p(e,, 0y, .., rN/r;).

and (B-4)
Pry Fay oo Tn) = p(r,, 0)pry, By oo, Py /T, 1),

where pir)) is the probability of the scatterer occurring be-
tween r, and dr, and p(r;, r,) is the probability of the jth and
the kth scatterers occurring simultaneously as specified.

The conditional configurational average of a random func-
tion F over the ensemble of configurations of N — 1 nodules
holding the jth nodule fixed can thus be defined in terms of
the conditional probability distribution function p(ry, ry, ...,

Iy/t;) as .
N
<F>I-,[ -~JFp(r,.r,,....r~/rJ) I1 dr.. (B-5)
IN=-1 L L RY
Where -

N
I-[ dl'. - dl’l. drz, ooy d'._ 1
[ LR
and the integration, equation (B-5), is not performed over dr,.
Similarly,
N

(F),-J‘ J‘Fp(r,. Py IN/TR ) _n dr,.
V-2 °

*)

(B-6)

Using equations (B-4), (B-5), and (B-6), (F)> and {F), can be
expressed in terms of (F), and {F), in the following manner:

(F) = j‘<F>/P(r/) dr,,
and (B-7)

- P(r[-"n)
<Fo, J.<F>/n T) dr,.
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APPENDIX C
BACKGROUND OF THE REMOTE-SENSING TECHNIQUE

Existing prospecting techniques for manganese nodule de-
posits require lowering instruments, sensors, etc. by cable sev-
eral miles to the ocean floor. For example, side-scan sonar
imaging at ultrasonic frequencies is in wide use and provides a
detailed picture of the bottom, including profiles of individual
nodules (Spiess, 1980).

However, side-scan sonar imaging must be done relatively
close to the bottom and requires a long tow cable. Survey
speeds are consequently slow and the process is, therefore,
expensive. Moreover, ultrasonic frequencies are severely at-
tenuated with distance so that remote sensing is ruled out
when sounding in a typical water depth of § 000 m with high-
frequency transducers.

To increase the speed of surveillance and to reduce the
prospecting cost, the cable from which the instrumentation is

lyzed to infer the presence and amount of nodules.

The remote-sensing technique is based on the expected
acoustic signature of the bottom in the presence of noduls
The characteristic acoustic response (as a function of fre
quency) of nodule deposits is that of a “high-pass filter™ {(Map
nuson et al, 1981). The break frequency increases with in
creasing nodule size. If the mean size is fixed, the strength o
the return signal will increase with increasing nodule cos
centration. The expected high-pass filter characteristic of th
nodule response is the basis of the research. Ocean bottoms
without nodules have a relatively flat spectrum and the n
sponse is less independent of frequency. If a return from te
bottom exhibits a high-pass filter characteristic, we conclude
that nodules (or other rounded objects) are down there. It u
the qualitative difference between bottoms with and withou

.~ suspended should be eliminated. To do this, mount the instru- nodules that makes it possible {in principle) to sense nodules
-~ ment in or near the survey ship to form a remote-sensing remotely. As for the quantitative results, detailed analysis &
~*a system. After sending the acoustic pulses remotely from the required and we present one here.

exploration vessel, the reflected return sound pulses are ana-
‘:;.
-

APPENDIX D

BRIEF REVIEW OF TWERKSY'S (1957) WORK "

Twersky (1957) in his pioneering paper “On scattering and
reflections of sound by rough surfaces” considered rough sur-
faces as a random distribution of arbitrary identical scatterers

(e.g., circular semicylinders and hemispheres) on free or rigid .

base planes.

Starting with the boundary-value problem {or a single con-
figuration of scatterers (it was considered at that time to be
difficult to calculate the far-field scattering amplitude of a
single scatterer due to the lack of good computing facilities)
the goal was to find the analytical, rather than numerical,
results of the corresponding ensemble average energy flux
from rough surfaces excited by a plane acoustic wave.

The physical restrictions in Twerksy's paper were primarily
from the assumed sparse distribution of scatterers, i.c., the

'avcrage separation of scatterers is large compared to ther

sizes. However, this assumpticn made his heuristic approx-
mation (that the average field with two scatterers held fired

-could be replaced by the average with one fixed) feasibie and

allowed the development of an initial practical formalise
without loss of generality. For the case of a dense distnibution
of scatterers, multiple scattering involving a higher-order sa-

tistics has to be considered. This is now under investigationty * .

the authors [or the scattering problem of nodule deposits.

Finally, the reflection coeflicients, as well as differential scat-
tering cross-sections per unit area of rough surfaces (mutually
consistent in fulfilling the principle of conservation of energy]
were obtained by Twersky considering multiple-scattering &
fects.
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Multiple scattering of compressional and shear waves by fiber-

M

reinforced composite materials
V.K. Varadan, Y. Ma, and V. V. Varadan

Laboratory for Electromagnetic and Acoustic Research, Department of Engineering Science and Mechanics,
The Pennsylvania State University, University Park, Pennsyluvania 16802

(Received 15 October 1985; accepted for publication 19 December 1985)

A multiple scattering formalism using a 7 matrix to characterize the response of a single fiber to
an incident wave is presented to describe P- and SV-wave propagation in a fiber-reinforced
composite. A convenient numerical procedure is then developed to compute the effective elastic
moduli, attenuation, and phase velocity as a function of frequency and fiber concentration.

PACS numbers: 43.20.Fn

INTRODUCTION

In the design of fiber-reinforced composite materials for
structural applications, it is important to know the dynamic
properties of the composite as a function of frequency, fiber
properties, concentration, and distribution. It is the dynamic
structural properties that determine the response of a struc-
ture to transient loads. The dynamic properties of the com-
posite can be predicted by studying the propagation of elastic
(Pand SV or SH) waves in such materials either experimen-
tally or theoretically. Waves propagating in such a medium
will undergo multiple scattering, geometric dispersion, and
attenuation. The resulting effective propagation constant is
hence complex and frequency dependent, the real part being
directly related tc the elastic properties of the composite.
Previously, we have given a multiple scattering formalism
for the propagation of SH waves in a medium containing a
random distribution of correlated fibers.! The formalism is
based on the quasicrystalline approximation (QCA) which
requires only a knowledge of two body correlations and the
T matrix of a fiber of arbitrary cross section.

In this paper, we consider the more realistic problem of
compressional- (P-) and shear- (SV¥-) wave propagation
perpendicular to circular fibers. The only relevant theoreti-
cal studies of this type are thase of Bose and Mal? and Datta?
in the low-frequency limit (Rayleigh range). The appropri-
ate correlation between fibers is not incorporated in their
investigations. Even though they could obtain reliable values
for phase velocity in the Rayleigh limit, the relevant coher-
ent attenuation was not presented in Ref. 3, while some ap-
proximate value was presented in Ref. 2. However, the com-
putations of frequency-dependent elastic properties such as
dilatational modulus, shear modulus, Young's modulus,
etc., require both phase velocity and coherent attenuation as
a function of frequency for a range of concentration. This
paper provides analytical and numerical multiple scattering
approaches for such a study. We have derived analytical ex-
pressions for the effective propagation constant in the Ray-
leigh limit from our multiple scattering formalism. Our re-
sults of phase velocity agree with those of Ref. 2 and the
Hashin-Rosen* bounds. Further, we have obtained numeri-
cal results for higher frequencies and higher fiber concentra-
tions. The results are presented in the form of plots of the
attenuation and phase velocity of P and SV waves and the

effective elastic moduli as a function of frequency and con-
centration.

1. SCATTERING FIELD FORMALISM

Consider a random distribution of N number of long,
parallel elastic cylinders embedded in an infinitely extended
elastic solid (matrix) which are referred to as a coordinate
system, as shown in Fig. 1. Here, O, and O, denote the
centers of the ith and jth cylinders and can be represented by
polar coordinates 7, and ¢, and r, and ,, respectively. The z
axis is taken parallel to the axis of the cylinder, and P is any
point in the matrix which is denoted by polar coordinate
system centered at O,. ]

Let 4, 4, p be the elastic constants and density of the
matrix medium and 4,, ©,, p, be those of the cylinders.

Assume that either a time harmonic plane compres-
sional (P) or shear (S¥) wave of unit amplitude and fre-
quency @ propagates normal to the cylinders. Choose a Car-
tesian coordinate system (see Fig. 1) such that the direction
of propagation of the incident wave is along the x axis while

z

FIG. 1. Random distribution of circular cylinders and the geometry.
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the displacement vector of the incident shear wave is along
the y axis. Suppressing the time dependence e = “*, the dis-
placement vector corresponding to the incident wave is de-
noted by »
o |e“"%, (P) wave,
u =

ey, (SV) wave,
where k, and k, are the wavenumbers of the Pand S¥ waves
in the matrix,

k, =w/c,; k,=wlc,; ¢, =V(A+2p)/p;
¢, =ulp. . )

The waves undergo multiple scatiering when they im-
pinge on the cylinders, giving rise to a displacement field
inside the cylinder also. The displacement vector corre-
sponding to the scattered field is denoted by u’ while that
corresponding to the refracted field is denoted by u,. The
displacement fields u’ and u, satisfy equations of motion giv-
en by

(N

[k, 2=k, VY- 4+ kW' +0' =0, 3
[k 2=k, HVV+ k[ V]u, +u,=0. (4)
In Eq. (4),
k, =w/c;; k, =w/c;
(5)

=y A+ 2u)/p; ¢ =VB/P
are the P and SV wavenumbers and wave velocities, respec-
tively, inside the cylinder.

The displacement vector can be constructed using two
scalar potentials ¢ and ¢ which are solutions of the scalar
wave equation for compressional (¢) and shear () waves
and is given by

u=Ve4+kVX(¥). (6)

The expansion of the solution of the scalar wave equation in
terms of cylindrical functions, namely, products of Bessel or
Hankel functions and trignometric functions, is well known.
The outgoing scattered waves centered at the origin of the
cylinder are given in terms of Hankel functions, while the
exciting field must be regular at the origin and hence given
by Bessel functions.

The total displacement field at any point (say P) in the
matrix is the sum of the incident field and the fields scattered
by all the cylinders. The field that excites the jth cylinder uf
is, however, the result of the incident field u® and the fields
scattered from all the remaining scatterers. Thus, at any
point r in the vicinity of the jth cylinder,

N
ui(r) =u’(r) + Y ui(r—r,). (M

in)
We now expand the scattered and exciting fields in
terms of vector cylindrical basis functions ¢, and ¥,,:

u(r) = i

uy(r) = i

[avd (r—r) +B8. 0. (r—1)], (8)
(44 Red,(r—r1)

+ B8, Rey, (r—r)], (9)
where
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b, =Vé, = (1/k,)V[H, (k,Ir =1, "], (10)

Y, =k, VX(3¢,) = (1/k,)VX [2}1. (k,|r — r,])e"'e‘] '
(1

The Re &, and Re ¢, are given by (10) and (11) with Han-
kel function replaced by Bessel function J,, and a,, 5., 4.,
and B, are undetermined coefficients. In Eq. (11), 6, refers
to the angle that r — r, makes with the x axis (see Fig. 1).
Since (uf + u?) is the total field in the matrix medium,
the expansion coefficients of the field scattered by the ith
cylinder may be formally related to the coefficients of the
field that excites the ith cylinder through the 7 matrix:

(5)-2.Gx 7)Gi)

Substituting (8) and (9) in (7), we obtain

(12)

Y [44 Red(r~r1)) +B, Rey, (r—r))]

=u’(r) +iz [@ndn(r—r)+B8nb.(r—r)].

ip)‘m

(13

It should be noted that the series on the right-hand side of
(13) is expressed with respect to the center of the ith cylin-
der. In order to express these quantities with respect to the
center of the jth cylind.r, the following addition theorem for

cylindrical vector wave functions is invoked:

l)l+mR€ ¢m (l'—-l‘/)¢,_ (ry) ’
(14)
Wi(r—1,) =>: (=D'*"Redn(r=1)¢_n(r,),

o, (r—r,) "'z(

wherer, =r, —r1,.

Substituting (14) in (13) and simultaneously expand-
ing the incident wave in a Fourier-Bessel series expansion
and then employing the orthogonality relations for the vec-
tor basis functions, we obtain

AL L
(af.)=(w.)‘ e
In Eq- (15)1
N
L/ =l‘em"‘6|p + 22( - 1)M+~a:u¢m—'l(rv) ’
] m
(16)

N
M, =re""5, + 33 (-

ivh) m

l)n*.ﬂ:uwm—n(ru) ’

where §, is the Kronecker delta. For P-wave incidence,
P =1, and for S-wave incidence, P = 2. In Eq. (15), L and
M contain unknown coefficients a@ and S8 of the scattered
field. The coefficients a and B are, however, related to 4 and
B of the exciting field through the 7" matrix as defined in Eq.
(12). Substituting Eq. (15) in Eq. (12), we obtain a system
of linear equations for the scattered field coefficients:

(50)-3 G 72)()
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In the sequel, we continue the analysis for P-wave inci-
dence and study the phase velocity, coherent attenuation,
dynamic moduli, etc., both for low and higher frequencies.
Without much detailed presentation, we also present similar
results for S-wave incidence.

For only P-wave incidence, Eq. (17) can be rewritten
for identical cylinders as

N
al=3% T:,(a:, +> 3 (= 1).'”-a:_¢._”‘(ru))

i) »"

+3TE(S S (-0 Bl ).

]

(18)
and
N
BL=STh(@ + 3T (-1 g _tny)
a’ i) n”
) .
+STE(T 3 (=0T L),
" i) o
(19)
where

Q@ = e

It can be seen from Eqs. (18) and (19) that the scat,

tered field coefficients @, and £, are coupled. To uncouple
these equations, we multiply Eq. (18) by (T'*)~! and Eq.
(19) by (T2)~! and subtract to obtain

ﬁ/u = (TZZ)(TIZ)—la}_ [(TZZ)(TIZ)—lTH —_ Tll]

N
x(a*+ 5 o'tr)a). (20)

Y]

where o'(r,) stands for the propagator term given by
(= 1" *""¢,._,. for P waves. In writing (20), we have
dropped all the summation and subscripts to avoid cumber-
some looking expressions. With Eq. (20}, Eq. (18) now ex-
plicitly gives the scattered field formalism for elastic wave
propagation through the composite mediu:n.

In Eqgs. (18) and (19), the scattered field coefficients
explicitly depend on the positions of the cylinders. For a
system with a large number of cylinders, it is more meaning-
ful to study the effective propagation characteristics in the
medium rather than the details of the multiple scattering
processes that take place. Thus a configurational average is
performed in Eqs. (18) and (19) over the positions of all
cylinders except the jth, which is assumed to be held fixed.
The details can be found in Ref. 1. We thus have, for identi-
cal scatterers, the average scattered field coefficients of the
scattered P wave given by

<a/>/ = T"(ao +(N¥N=-1) f (a‘)ua‘(r”.)p(rllr,)dr,) + TRTR(T1) ! f (al)yaz(ru)p(rllrf)drl
L - s’

—T"[Tu(_T")"‘T“—T"](f a°p(r,|r,)a’(rq)dr,+f f (&‘)w‘p(rﬂr,.r.)a’(ru)a'(r/,,)dr, dr,‘),
. s* s Jse

where (), and ( ), denote the configurational averages with
the ith scatterer and both the ith and jth scatterers held fixed,
respectively, and p(r,ir,) and p(r,, r;[r,) are the joint prob-
ability distribution functions. The notation *(r, ) stands for
(= D***¢____(r,), the propagator for S waves. In Eq.

(21), S’ denotes the cross-sectional area of the medium ex-
cluding the circular area of radius “2a” which is the hard
core radius or the minimum distance between two scatterers,
cach of radius “a.”

The above equation is a hierarchy which, when iterated,
will involve higher-order conditional probability distribu-
tion functions. However, the hierarchy can be truncated by
invoking the quasicrystalline approximation (QCA) sug-
gested by Lax.> According to the QCA,

(aj)q ~ <al)/ ’ j#‘ '

(22)

(@) u~(a*)y, i#j#k.

The probability distribution function in Eq. (21) can be
conveniently written as p(r,, r,/r,) = p(r,/r,)p(r,/1,) and

p(r_,)_lg(x)/s, x>1, (23)

r, o, x<l,
where we have assumed that the scatterers are impenetrable
and that for a translationally invariant system, p(r,/r,) de-
pends only on |r,| = 2ax. In the statistical mechanics litera-
ture, g(x) is known as the radial distribution function.
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For uncorrelated, impenetrable cylinders g(x) =1 or
1/(1 — ¢) for x> 1, where c is the concentration of cylinders
and g(x) = 0 for x < 1. This approximation is valid only for
very low values of ¢ (very sparse distribution of cylinders).
Several models of the radial distribution function such as the
Percus-Yevick approximation, the convolution-hypernet-
ted chain approximation, the Born—-Green-Yvon approxi-
mation, and the self—consistent approximation are widely
adopted in numerical computations.

In our calculations, the Monte Cailo calculations of
8(x),® which give a virtually exact solution to the equations
of state, are used for ¢ up to 0.55.

To study the coherent or average P-wave field in the
effective medium, we assume that the average field is a plane
P wave propagating in the x direction just as the original
plane wave incident in the matrix but with a complex propa-
gation constant X, = X} + iK'§, which is frequency depen-
dent. The real part X'/ is related to the phase velocity and the
imaginary part X'§ is proportional to the coherent attenu-
ation of the P wave. Thus

(al), = X,e*7'%. (24)

Equations (22)-(24) are substituted in Eq. (21) and
the extinction theorem can be invoked to cancel the incident
wave term on the right-hand side of Eq. (21). The resulting
equation is
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X, =TUIL X  +T2I0 (T2 (T2 "X, — T2 (TR "' TR ILX . +TL I X.], (29

where
I = -.-~'21m°(k—2—_'k—z (2,0J, .. (K, H_ . (2%k,a) —2K,aH, . (k,a)]’,_ . (2K,a)]
4 14
+4a* | H,_ .(2k,ax)J,_ .(2K,ex)[g(x) —1]x dx). (26)
, .

and /2. isobtained by replacing k, in Eq. (26) by k,. In Eq.
(26), ny ( = N /S) is the number density of the cylinders in
the matrix.

To obtain a similar expression for the average S wave in
the effective medium, we assume that the average field is a
plane § wave propagating along the x direction just as the
original plane S wave incident in the matrix but with a com-
plex propagation constant K, = K| + iK'} which is fre-
quency dependent. By assuming (84), = Y, ¢*”%, wecan
obtain a dispersion equation for Y.

Equation (25) is a system of homogeneous linear simul-
taneous equations for the coefficients X, for P waves. For a
nontrivial solution, the determinant of the coefficient matrix
can be set equal to zero which yields the desired dispersion
equation.

The dispersion equation obtained for P- or S¥-wave in-
cidence can be solved for the effective propagation constant
K, or K, respectively, as a function of k,, k,, and number
density of the cylinders n,. The determination of X, or K, is
necessarly numerical except in the long wavelength or Ray-
leigh limit. This will be discussed in Sec. I1.

Il. RAYLEIGH LIMIT SOLUTION

In the Rayleigh or low-frequency limit, the size of the
scatterer is considered to be very small compared to the inci-
dent wavelength. It is then sufficient to take only the lowest
order coefficients in the expansion of the fields and the 7-
matrix elements’ and the set of simultaneous equations for
the unknown X, X, X_,, X,, and X _, for effective P-wave
propertiesand Y, Y,, Y_,, ¥;, and Y _, for effective shear-
wave properties. The dispersion equations in terms of effec-
tive P and S wavenumbers K, and K are obtained as fol-
lows:

for P-wave incidence,
K \? —c) FH —
(__p.) =i’—+ic“ c) i(k’a)T(' » Q,Z’)'

1
k, F, l+¢ 4 F,
27
where
TABLE | Mastenal properties used in calculations
Lame constants
Denuty p (kg/m’) 4(Nvmh) uNLm*
Boron 1530 1667 < 10" 23«10
Aluminum 270 6R6 « 10'° V8. 1000
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NN NN

i
Z,=(1+ct)(1 +2t)[1+en(l +6)],
F,=1-cty(1 =€) =231y,
H,=({1+ct;(1 +€)](to+ 1, + Ictot))
+0(1+eto) (1 + 2e1) (1 + €7%)
+ e {1 tet,(1+€)](1 +ety)
Q, =[1+ct,(1 +€)](t+1,)
—2ctyte + ,() +cty)] + 6,(1 + €'2)
+ €%, [1 4 cty(1 +€) — 2e0,(1 +ctp) ],

€=1(c,/c,)?,
to= — (A, +p, —A—p)/ (A, +u,+u),
h=(p —p)/2p,

= —p(p—p)/ (A +3p)+u(d+u)];
for S-wave incidence,

K \? —e)? —_
( .) =-—z—'-+lC (l C) l(k‘a)z (f’;Hx Q.Izl)

« ) l+c 4 F?

where
Z,=(1+2t)[1+ety(l+€)), F,=14ct,(l—¢€),
H=t,(1+e")[1 +ct;(1 +€)]

+ 0,61 + €7 (1 + 21))
Q=01+ "1 +cty(l —€)] + t6(1 + €37 .
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Following the work of Christensen,*® one could define a
two-dimensional bulk modulus as (E,5) = (A + u), an
expression which can be derived from Eq. (27), as given by

(Exp) = (A +4) + (4 +2)

(A —py—A—p)
(M=) (A +u) +A+ (1 +op’
which agrees exactly with Eq. (28) of Ref. 9.
From Eq. (28), one could obtain an expression for the
effective shear modulus ( 1) /u also as given by

\51 T T
!
4# ~ /_/ -
~ s \\
~ = cio0s6 N
w —
. e -~
,//
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) 3
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- B wae v el imeneonal frequency for P waves
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between P and S waves.

922 >=1+c[(—L)+(1—c)——L—“’+7 ) ]'l.
B My — (2b + 8u/3)
whereb = A + 2 4/3 is the bulk modulus. The equation is in
exact agreement with Eq. (4.26) of Ref. 9.

1. NUMERICAL RESULTS AND CONCLUSIONS

Computations of specific damping or coherent P- (SV-)
wave attenuation K§/k, (or X3/k,) and phase velocity
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FIG. 6. Attenuation versus nondimensional frequency for P waves.
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k /K, (or k,/K,) as a function of nondimensonalized fre-
quency k,a (or k,a) s~ concentrsuon C{ = n,ra’) are
performed by determining the ungular values of the coefi-
cient matnx of X, (or ¥, ) obtaned from Eq (13) The
computation involves an iterative procedure for determining
the domuinant root in the complex plane in terms of &, a (or
k,a) umng Muller's method. Good 1nitial guesses are pro-
vided by Eqs. (27) and (18) at low values of k,q i k, g and
these could be used systematcally to obtain quick conver-
gence of roots at high values of k,a tor k,a)
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Fig 3 depscts the corresponding speciSc damping 5’
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shown 1n Figs. 6 and 7 The anomaly of the attenuation for
¢ =033 s umply the result of strong multiple scattering
effects for such a highly packed system. This seems possible
only for P-wave incidence as seen in Fig. 6.

From the effecive wavenumbers X, g or X, g, one could

casily compute frequency-dependent elastic properties as
shown 1 Figs. 8-1). These properties are very useful in the
design of fiber-rewnforced composites.
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EFFECTS OF NONSPHERICAL STATISTICS ON EM WAVE PROPAGATION
IN DISCRETE RANDOM MEDIA
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Laboratory for Electromagnetic and Acoustic Research
Department of Engineering Science and Mechanics
ad
Center for the Engineering of Electronic and Acoustic Materials

*Departmens of Chemistry
. The Pennsylvania State University, University Park, PA 16802

ABSTRACT

Earlier results for electromagnetic wave propagation in discrete random media assumed spherical statistics in
discribing the spatial distribution even for nonspherical scatterers. The appropriate pair correlation function for
nonspherical scatterers can be, in general, obtained by the Monte Carlo method which is essendial in analyzing the
nonspherical statistics. This pa;nr presents new results using the nonspherical statistics in the investigation of
multiple EM wave scattering by aligned dielectric prolate as well as oblate spheroids randomly distributed in space.
The comparison between the previous results and those using spherical statistics show that approximating the spatial
distribution of nonspherical scatterers using the spherical statistics will yield either high or low effective properties

of the random media.

1. INTRODUCTION

In the extant wave scattering literature, scatterers are generally being modeled as spherical ones and the
complexity of the analytical problem can therefore be reduced. However, in nature, most scatterers are not spherical
in shape. Thus, the sphere model will not be appropriate in some real applications. Even worse, when consider wave
propagation and scattering in a collection of nonspherical scatterers with a considerable concentration, in addition to
the shape of scatterers, the spatial distribulion of scatterers cannot simply be described using spherical statistics.
The fact is that the possiblily in finding another scatterer in the neighborhood of a given scatterer becomes uneven
in the radial direction which is not the case for s randomly distributed spherical scatterers due to the unsymmetry of
the problem.

To make the problem tractable, nonspherical scatterers with rotational symmetry properties randomly distnbuted
in  free space are first considered. Fortunately, scattering respooses from most nonspherical scatterers of this kind
are able to be respresented by the T-matrix (Varadan and Varadan , 1980]. But unless the concentration of those
nonsphencal scatterers(in this case, lossless dielectric prolate(oblate) spheroids for EM wave study) remains at a
lower level, the spatial distribution of those nonspherical scatterers cannot be, even known from our istuition,
correctly described by the spherical statistics. To just see the shape effect and distriguish this from those previous
approximations made using the spherical statistics even for noanspherical scatterers, we consider only the aligned

case which means the symmetry axes of the spheroids are all parallel to the direction of the incident wave.

The nonspherical statistics involved 1o the analysis is to introduce the pair correlation function for aligned
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spheroids. With the help of high speed digital computers, the Monte Carlo method can be employed to obtain the
l pair correlation function for aligned spheroids and some numerical values of the function are presented in this paper.

Finally, computations of the effective atlenuation rate as well as the phase velocity using the nonspherical statistics

t( in studying the electromagnetic wave propagation through randomly distributed aligned spheroids are peiformed.
: When compared with numerical results for nonspherical scatterers using the spherical statistics approximations, the
! attenuation is found to be either over or under-estimated.

Multiple Scattering Formulation

.;\' We coansider N(N — o) rotationally symmetric oriented scatterers randomly distributed in a volume V(V — )
so that the number of particles per unit volume ny = N/V is finite, see Figure 1. Only the most important details

1 that lead to the dispersion equation involving the pair correlation are presented and for all intermediate steps, we

e refer the reader to [V.K. Varadan et al., 1979].

o Monochromatic plane electromagnetic wave giving rise to an electric field EC are assumed to propagate parallel

é to the rotational axis of symmetry of the scatterers (the z-axis), see Figure 1. The field scattered by the ith scatterer

‘ is deooted by Eis so that the total field E at a point r outside the scatterers is given by
e E() =Edn + ZEXND). (1

The field exciting the ith scatterer E° is given by
-, ESr) =E%r) + E®). o @)

From (1) and (2), we note that
E(r) = ES(r) + E(D) &)

so that the exciting and scattered fields must be defined in a self-consistent manner. These fields are expanded in a

7 set of vector spherical functions as follows:
- ES(r) = ZZZ [bgp ) ReM o dr-r) wco WReN o dr-r)); a< |r-rl<2a (4)
! " and
s i i .

E’r = ZZZ By MomAr - 1) + Com/Nomdr - 1l lr-rl>2a (5)

o~
where {b,c} and {B,C} arc expansion coefficienis of the exciting and scattered ficlds, respectively. The vector

o spherical functions {M ,N} are defined by (Stratton , 1941].

E*- These expansions are substituted into (2) with the following definition of the T-matnx of a single scatierer
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(where the T-matrix is independent of the position of the scatterer) which results in an equation for the exciting field
coefficients {b,c} aloae. This equation averaged over the position of all scatterers where the QCA [Lax, 1952] is
involved, and we arrive at an equation for the configurational average <b> and <c> of the excitng field coefficients
with one scatterer held fixed.

We assume that this average ficld (the coherent ficid) propagates in & medium with an effecuve complex

wavenumber K = (K1+ iK,Z)k in the direction of the original incident field in the discrete medium. Thus, we obtain

K.r

omil® 1 e

boml'>; = i'Y
and

omi > = 12

where {Y.,Z} are expansion coefficicnts of the average exciung field. The ditpersion equations then take the

omlc | )

following form:
Ty XX et Ota,l1 : éln 21 o
ola’ = F (-1} UH)X(YNN(TOIP ) Woo(n.n,l) . (TOlp ) xeg(na M)
bd
C'P[(Telp " 2"00("'“.')‘) v (Tc:lp':ln).2
0201 = ZLI PEo ), (YOLp((T, 0“’ ' te(n0h) « (T |p°'“ 2y, (nn k)
eln 22

¢ Zeyp [Ty V1 g (a0 + rr 15 W (n0n A ) (10;

where the functions {v.x} are defined in (Bning: et al,, 1981] and (JH) 13 an inlegral given by

Leo(0.0' M)} 9)

(JH))‘(K.k.nO) - vao('lkol)jon 310846 Io C(r.O)jk( Kr)hk(kr)Pk(cote)Pq(cosO)r:dr 1y
In the above equation, G(r,8) is the pair correlation funcuon for aligned spheroidal scatter, P(cos8) s the Legendre
polynomials and ; and h are the spherical Besse! and Hankel functions, respectively For sphencal scatterers,
Eq (11) can be rcducf:d to the following form

(JH)y = 6¢c[2ka); (ZKajh, (2ka) - ZKahl(Zkanl(ZKa)]/((h)z (Ka)l}

Z-kJ’l [g(l)-llhl(Zku)u(ZKquzdl (i

Eq (12) 1s actually a special case of (11) by neglecting the azimuthal angle dependence for the paur correlation
function. Therefore, g(x) s Eq.(12) 13 simply the paur correlation function for spherical scatterers < s ihe

concentration (c-4n33n0/3J and a 13 the radius of the scatterer The prime denotes the denivative

THE PAIR CORRELATION FOR ALIGNED SPHEROIDS

The pair correlation function for sligned sphermidal particles can be expanded in the Legendre polvnomals as




R N At A

G(r) = Zn gn(r)Pn(cose) (13)

where the coefficients depend only on the distance between particles and azimuthal angle (see Figure 1). The
cocfficients g,(r) can be evaluated during the Moote Carlo simulation [Metropolis, et al., 1953] by using the
orthoganality of Legendre polynomuals. For a system of hard particles, the required probability 1o Monte Carlo
simulation is simply checking the overlap criterion. Overlap is decided whether the center to center distance for a

pair of spheroids 1s less than d which is defined by
ds (Zb/n)(l-coszeocoszefnz)'vz (14}

where n 1s the aspect ratio of the spheroid such that n >1 for prolate and < 1| for oblate spheruids and b 1s half the
ength of the axis of symmetry for the sphenod (see Figure 1) The plot of Bg!r)(Inel) vs normalized rad:a,
distance, 1e b, for aspect ratio 20 and 15.7% concentratioo s shown 1o Figure 2 For companison, the

center-center correlation function g(r) calculated using Percus-Yevick approximation 15 aiso presented

RESULTS AND DISCUSSION

The real and imaginary part, i K| and K, respeclvely, of the effecuve wavenumber K. are relaled 1o the phase
velocily and attenuation of the effective medium. They can be oblained by solving the dispersion equations (91 and
() simuitaneously N

In order w show the difference in electromagnetic wave propagation characlernsuics, ¢ g K, and K., resuits
“aved on the approtimation {or randomly distnbuted spheroids using the spherical statistics (Circumsenbing Sphere
Arprotumation and Equivaient Volume Approximation [Varadan el al, 1986]) are compared with those using
nonspherical statistcy Moreover, without considering interaction among scatterers, resulls based an singe
scaltering theory are also included to jusufy muliple scattening effects for scatterers with consideratic
~oncentrations

In Table |. numerical results for phase velocir, as well as for sttenuation are presented {or prolate spherouds
~ith an aspect ratio | S and 1S percent concentrauon under different considerations One sees thal the resu.ty
iained from vingie sallering theory give much higher atlenuation than all other cases and this aiso has heen
shierved for all the subsequent computaions Generally speaking, the circumscnibing sphere assumplion predits
wer attenuation whije the equivalent volume astumpuion predicts a higher attenuation However. the phase velou:y
s much less wensiive W the statistics considered  As a matter of fact, the phase velodity for a nonresonant discrete
random medium will not be cntically alfected by the pair correlation function For oblate spheroids, this ohvervation
also holds and can be shown 1o Table Il which 13 for oblate sphermids with an aspect ratio 9667 and 15 percent
.oncentration

In conciusion, we would hike to emphasize the importance 1n inuoducing the nonspherical statoslics n

’. '._-’\ “
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analyzing the scattening from densely distributed noaspherical scatterers. The approximations made for the spalial _-
i distnbution of nonsphencal scatierers can produce results which either over or under-estimate the effective properties ‘
which, in this case, is the attenuation of the effective medium. :
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Table I Effecuve K for prolate spheroids with an aspect rato 1.5 and 15.7 percent concentration )
Monte Carlo Equival Volume Circumscribing sphere  Siogle Scattening .
", Simulation Assumption , Assumption Theory
K kb K,k Kiyik K,x Kok K,k Kq/k Kq/k "
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.: Table I Effecuve K for oblate spheroids with an aspect rano 0.667 and 15.7 percent concentration \
Monte Carlo Equival Volume Circumscnbing sphere  Single Scattering :
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. 0.1 1.1088  0.6620(-5) 1.1087  0.3493(-5)  0.2146(-4)
. 0.2 1.1094  0.5203(-5) 1.1094  0.5380(=4) 1.1093  0.2862(4)  0.1733(-3)
0.3 11105 0.5655(<4)  1.1105  0.1865(-3) 1.1103  0.1008(-3)  0.5937(-3)

- 0.4 11121 0.2614(-3) L1121  0.4591(-3) L1116  0.2541(-3)  0.1436(-2)
. 0.5 1.1141  0.6498(-3)  1.1141  0.9409(-3) 1.1134  0.5352(-3)  0.2875(-2)
0.6 1.1167  0.1287(-2) 11167  0.1723(-2) 1.1157  0.1008(-2)  0.5103(-2)

\ 0.7 11199  0.2360(-2) 11197  0.2927(-2) 1.1185  0.1770¢-2)  0.8328(-2)
4 0.8 1.1236  0.4144(-2) 11231  0.4719(-2) 11219 0.2978(-2)  0.1274(-1)
. 0.9 11277  0.6882(-2) 1.1270  0.7318(-2) 1.1258  0.4893(-2)  0.1846(-1)
. 1.0 11320 0.1077(-1)  1.1309  0.1098(-1) 1.1302  0.7909(-2)  0.2545(-1)
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MULTIPLE SCATTERING OF WAVES IN RANDOM MEDIA CNANTAINING
NON-SPHERICAL SCATTERERS
by
Vasundara V. Varadan, Vijay K. Varadan and Yushieh Ma
Center for the Engineering of Electronic and Acoustic Materials
and
Department of Engineering Science and Mechanics
The Pennsylvania State University
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- SUMMARY
E In this paper we wish to consider the effect of multiple scattering, scatterer geometry, statistics of the positional
and orientational distribution functions on the propagation of time harmonic electromagnetic waves in 2 medium
containing a random distribution of non-spherical scatterers. Some of the features that complicate the analysis are - (1)
_. the size of the scatterers is comparable to the wavelength of the propagating wave; (2) the volume fraction occupied

by the scatterers need not necessarily be small; (3) the impedance mismatch between the scatterers and the host
} medium need not necessarily be small. These in tumn necessitate some of the effects we wish to focus on namely -
- detailed modeling of scatterer geometry and scatterer response, multiple scattering effects and the effect of correlations.
. We have already addressed many of these factors [1) and in our proposed talk we wish to present some recent results
using non-spherical statistics for the second moment of the field. ‘
In collaboration with Professor William A. Steele of Chemistry Department at Penn State, we have generated
' by Monte Carlo simulation the pair correlation function for spheroidal particles as a function of the distance between
them and the direction of the vector joining their centers. At present we are generating the pair correlation function for
randomly oriented spheroids and are also considering the effects of inter-particle forces as well as higher order
correlation functions for clusters of particies. All of these have been incorporated into the multiple scattering
N calculations and compared with available experimental results. In contrast to previous work more attention will be
focussed on the second moment of the field.
This paper will fit in very well with the scope of the symposium in the areas of mathematical methods for
u random media, characterization and modeling of random media and also interface quite well with some of the other
papers in this area that we expect will be presented at the ACARD symposium.

1. PREFACE |
", The average or effective properties of a random medium containing inclusions of one material or voids 1
" distributed in some fashion in a second material called the host or matrix material can be conveniently studied by 9
" analyzing the propagation of plane waves in such materials and solving the resuiting dispersion equations. Since :
waves propagating in such a two phase system will undergo multiple interactions with the scatterer phase, it becomes :
. natural to consider multiple scattering theory and ensemble averaging techniques if the distribution of the inclusion :
~» phase is random. In this paper, a multiple scattering theory is presented that utilizes a T-matrix to describe the
response of each scatterer to an incident field. The T-matrix is simply a representation of the Green's function for a :
.. single scatterer in a basis of spherical functions. In this definition, it simply relates the expansion coefficients of the »
= field that is incident on or excites a scaterer o the expansion coefficients of the field scattered when both fields are ]
expanded in the same spherical wave basis {1]. In theory, the T-matrix is infinite, but in practice the T-matrix is "
truncated at some size that depends on the .atio of size of scatterer to the wavelength and the complexity of the 3
, geometry. Formally, the T-matrix includes a multipgle description of the field scattered by the inclusion and this N
f“ requires a propagator for multipole fields to describe the propagauon from one scatterer to the next. Finally, the .
technique presented here is for a random distribution of scatterers which requires an ensemble average over the position K
of the ~catterers and requires a knowledge of the positional correlation functions. “
": In previous studies (2,3) we relied on spherical statistics for hard spheres, generated by Monte Carlo simulation ::
P !
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or by the Percus—Yevick approximation even for non-spherical scatterers. Essentially, this increased the exclusion
volume surrounding the non-spherical scatterer, and artificially restricted us to smaller concentrations in order to
prevent the statistical spheres from overlapping. In the present study, these restrictions are removed by using a new
Monte Carlo simulation developed by Steele [4] for non-spherical scatterers, that is based on expanding the two body
correlation functions in Legendre polynomials. This permits us to consider the angular cormrelations that exist for
non-spherical oriented scatterers. The final equation for the formalism is the dispersion equation which describes the
propagation characteristics of the coherent or average filed in the effective medium. The numerical solution of this
equation yields the effective complex, frequency dependent propagation number which is also a function of the size,
geometry and distribution of the inclusion phase. The effective wavenumber is a function of the direction of
propagation in the effective medium if the medium is effectively anisotropic. If, for example, the scatterers are spheres
or if the non-spherical scatterers are randomly oriented, the effective medium will be isotropic, but if the medium
contains aligned non-spherical scatterers the effective medium will be anisotropic. The effective wavenumber can be

* related to the effective material properties of the medium which are also complex and frequency dependent. For

. anisotropic materials, by solving the dispersion equation for different ditections of propagation with respect to the

b aligned non-spherical scatterers, we can construct all components of the material property tensors of the effective

ey medium such as the elastic stiffness tensor or the dielectric tensor, see [5].

In this paper, a systematic study is also made of first order contributions to the second moment or incoherent

o intensity of the wave field propagating in a discrete random medium. The second moment, which is traditionally
o defined as the correlation function of the component of the field fluctuations in any direction &, is denoted by

[, = <(2<AE) (0+AE) >where AE = E-<E> is the fluctuation of the field. Since the field fluctuations

can be expanded in a multiple scattering series, each term of which contains sums on all possible scatterers, it is

. evident that we can divide the resulting terms into two sets; one involves considering only those terms in which the

r same scatterer contributes to a particular order term in each field fluctuation, and the other involves distinct scatterers.

This latter set of terms will contribute to the incoherent intensity only if statistical correlations between scatterers are
Yaken into account. i in spid jati ince it i i

i i . Even for this set of terms,
positional correlations between scatterers should be taken into account at volume fractions exceeding a few percentage,
but these terms contribute to the incoherent intensity even if correlations are neglected.

Numerical results for aligned and randomly oriented oblate and prolate spheroids using the new correlation
functions have been obtained and compared with previous calculations for spheroids that used spherical statistics. We
foresee important applications of these new results to electromagnetic wave propagation through aerosols, which are’
non-spherical and often consist of aggregates and also in other cases where non-spherical scatterers are involved.

Ce—— 2

2. EFFECTIVE WAVENUMBER FOR THE AVERAGE FIELD
IN A DISCRETE RANDOM MEDIUM

Let the random medium contain N scatterers in a volume V such that N — oo, V = oo, but n_ = N/V the
number density of scatterers is finite. Letu, 4°, uei, us j be respectively the total field, the incident or pnmary plane,
harmonic wave of frequency w, the field incident or exciting the i-th scatterer and the field which is in turn scattered by
the i-th scatterer. These fields are defined at a point r which is not occupied by any one of the scatterers. In general,
these fields or potentials which can be used to describe them satisfy the scalar or vector wave equation. Let Re ¢
and Ou ¢, denote the basis of orthogonal functions which are eigenfunctions of the Helmholtz equation, see Morse
and Feshbach [6]. As explained in the introduction the subscript 'n’ is an abbreviated superindex and vector notation is
implied. The qualifiers Re and Ou denote functions which are regular at the origin (Bessel functions) and outgoing at
infinity (Hanke! functions) which are respectively appropriate for expanding the field which is incident on a scatterer
and that which it scatters. Thus, we can write the following set of self-consistent equations:

Er- €5 v -"xil""\’!z‘,‘:li‘v L

.
- N
u - u® leusi - uei + uSi - u® + E uS. + uSi , 1)) ry
l= J#1 J .
{ v
¥ W) ikk i 2 M
- pexp(ikk, +r) =« T alReo (r-r) @ )
"o
, ‘ ™
- e . 1 .
lo u, - S,nan Re¢n(r—ri).a<|r—ri1<23 R (3 ;:
)
L e i R
i o - I, Ouer-1); lrrpl>a | ) N
b , , N
l i i : : : N
where o and fo are unknown expansion coefficients. We observe in Eqs. (3) and (4) that "a” is the radius of the <
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::? sphere circumscribing the scatterer and that all expansions are with respect to a coordinate origin located in a particular
’ scatterer.
-, The T-matrix, by definition simply relates the expansion coefficients of u® jand us j provided u® i+ us  is the
. total field which is consistent with the definitons in Eq. (1). Thus (1],
i 1
fn = 20 T ) &)
r-l -
o~ : and the following addition theorem for the basis functions is invoked:
BN
| Ou ¢, (r- rj) =¥ o Son Fi— rj) Re¢, (r-1) . (6)
) Substituting Egs. (2) - (6) in Eq. (1), and using the orthogonality of the basis functions we obtain
- al - al +Za(r —r)‘l‘al . v
! \-: J#l
L
This is a set of coupled algebraic equations for the exciting field coefficients which can be iterated and leads to a
= multiple scattering series.
- For randomly distributed scatterers, an ensemble average can be performed on Eq. (7) leading to
- <0.i>i - al + <o (r- rj) Tj<aj>ij>i (8)
e ‘ where < > ;i denotes a conditional average and Eq. (8) is an infinite hierarchy involving higher and higher
conditional éxpectations of the exciting field coefficients. In actual engineering applications, a knowledge of higher
R order correlation functions is difficult to obtain, usually the hxeran:hy is truncated so that at most only the two body
5.- positional correlation function is required.

To achieve this simplification the Quasi-Crystalline Approximation (QCA), first introduced by Lax [7] is

) ' invoked, which is stated as

<aj>ij = ) <0.J>j . (9)

Then, Eq. (8) simplifies to

L]

<ai>i = al + <o (r;- rj) Tj<aj>j>i ; (10)

an integral equation for <ai>i which, in principle, can be solved. In particular, the homogeneous solution of Eq. (10)
leads to a dispersion equation for the effective medium in the quasi-crystalline approximation. Defining the spatial
Fourier transform of <a'>; as

<a>, = [eKeTi i) dK (an

and substituting in Eq. (10), we obtain for the homogeneous solution

C'(K) = I Jotr-r) PPerjry el KCi-Tar, cxy U
J#i .

If the scatterers are identical, then

- CiK) - J(K) = C(K), ()
- .

and thus for a non-trivial solution to <a'>-, we require that
t' 'l-ch(r—r)TJ P(r*r)e'K(r rj)drjl -0 . (14
¢ j#1

i

(14), we need a model for the pair correfation function. For non-spherical scauterers, the pair correlation funcuoen
depends not only on the length of the vector connecting the centers of the scatterers, but also on the direction of this
vector and the orientation of each scatterer. If the scatterers are spherical, then there is no dependence on direction and

In Egs. (12) and (14), P(r;ir,) is the joint probzbility distribution function. In order to perform the integrauon in & ;
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orientation and the statistics are said to be spherical or isotropic. In both cases, the scatterers are not allowed 10
overlap, i.e. an infinite repulsive potential is assumed between scatterers.

For aligned spheroids which are rotationally symmetric, the dependence is only on the angle 8 between the
separation vector and the symmetry axis which is taken to be the z-axis of the coordinate system, as shown in Fig. 1
There is no dependence on the azimuthal angle ¢. The joint probability distmbution function is then wnitten as

= G6x/v; - >R(@®) (15)

In the above equation, G(x) is the pair correlation function for aligned spheroidal scatterers, x = r; - r;, and R(6) is the
minimum center to center distance when the spheroids just touch one another at one point, such that the line joining
their centers subtends an angle 8 with the symmetry or z-axis of the spheroids. In this case the statstics are not
isotropic but are a function of direction. Equation (14) can hence be simplified to

lI —nofc(x)TG(x)eiK"dx =0 (16)

where (1/V) Z':i -N-1)V = n,. The integral in Eq. (16) is simply the spatial Fourier transform of oTG. The
zeroes of the déterminant as expressed by Eq. (16), yield the allowed values of K as a function of the microstructure as
determined by the T-matrix, the number density n and the statistics of the distribution as determined by the pair
correlation function. In general K, the effective wavenumber is complex and frequency dependent.

The dispersion equation as given in Eq. (16) is very well suited for computation. Using appropriate forms of
the basis functions ¢, which are solutions of the field equations, the T-matrix of the single scatterer can be computed;
for example, see Varadan and Varadan (1). The translation matrix g, although complicated in form for sphencal
functions, can nevertheless be computed in a straightforward manner. The spatial Fourier transform of oTG is fauly
easy to compute because the integrand is well behaved for large values of the interparticle distance. In recent years,
consideratle progress has been made in Monte Carlo simulation to describe the statistics for non-spherical hard
(impenetrable) particles by Steele. The joint probability functions have been expanded in a series of spherical
harmonics and radial functions with unknown coefficients. The coefficients are evaluated directly in the Monte Carlo
simulation. For aligned prolate and oblate spheroids, these results have just become available. The excluded volume
for these geometries is also spheroidal. This has been implemented in calculations of the effective wavenumber in
media containing random distnbutions of aligned spheroidal particles [8]. It can be seen that correct statistics
conforming to the shape of the particle is needed to get correct results at volume fractions exceeding 5%.

2. INCOHERENT INTENSITY

The towal scattered intensity is directly proportional to the second moment of the scattered field. It is known that
the total scattered field is a combination of the average scattered field and the fluctuation of the field due to the random
dismbution of scatterers, i.e., u = <u> + u, the incoherent component of the scattered intensity can be obtained as

e L) .
<UU > = <uU > - <u><u> , a7
To first order, that is taking only the single scattering contribution to each scattered field, we obtain
Wy > = < | u']2>- <Zuj. ):uk> -3 <uj>.2<uk>

-3 3 <uj‘uk> + X <|uj|2> - ZZ<uj>‘<uk>. (18)
j2k  k j jk :

The ensemble averages in Eq. (18) can be writien by integrating over the random positions T} Fier €tC. of the scatterers.
Thus,
) 2 . .
< U “>e l'loﬁ f! [((N - ])/N) <u Juk>Jk - <uj>j (Uk>k] drjdrk

Iy |2
nOJ <IUJ| >j er (19)

The second term in the above equauon, which is proportional to n, is the ordinary single scattering approximation to
the incoherent intensity and the magnitude of the incoherent intensi(i in any direction is proportional to the bistatic
cross section of a single scatterer. The first term proportional to n
between paurs of scatterers.

o is due to the effect of positional correlations
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and the first term of Eq (19 vanishes.
In order to obtain the incoherent intensity for higher concentrauons, the par coredtion funy o o
into consideration. Recently Twersky (19831 has modified Eq - 19 fur a dense distnbution of soduierers o
incoherent intensity has the form:

2 2 .
<iul“>e= no" ” [G(rj-rk) - 1) <u >J <uk>kdr drk

J J

| 2 ‘
+ nof<1uj| >J-drj - .

Equation (21) is the final form used in our computauon for the incoherent intensity up to the first order Howerer
higher order contributions to the incoherent intensity become more and more important 1if the itmpedance Ml
between the scatterers and the host medium as well as the propagation distance are increasing A detailed puture u. -
the ladder diagrams in explaining the higher order multiple scattering processes can be found in our previous pape:
In the calculation, a knowledge of the coherent field is still required since the average scattered field <u > isine. oo

in the formalism. The average scattered field <uj>; holding the j-th scatterer fixed can be expressed as. using t.;

<uj>j - zn' Tnn- <0.nj>j¢n-(r - rJ) 22

The exciung field coefficients cxnj are initially unknown in Eq. (22). However, the average fic.o . :.
exciting the j-th scatterer is known after defining an effective propagauon constant K which 1s compier A = *
iK,). Following this definition, the average or effecuve exciting field <anJ > can be written as

<0.nj>J = Aje K ko'l'j , N

where k  is the propagation direction of the incident wave. The unknown effective exciung amplitudes A % =~ =
can be solved by invoking the extinction theorem.
If we substitute Eq. (22) in (21), we obtain

< I u' I 2> - noz 1 [G(rj_rk) - ]]En-Tnn- <(Ln»j>j ¢n-}:ann.n...‘ <°~n"'k>.k°n" erdrk

+ "oj |3 Ton' <anJ>j¢n- |2 drj.
We notice that in Eq. (24), the muldplication of the T-matrix and the effective exciung field 15 nidepen oo
integral and the pair correlation function. In fact, the integral of the pair correlation function tums i @ me -

dimensional spatial Fourier transform of the pair correlatdon function (G(x)»-1]. In order 1o invesuyate he
of the incoherent intensity, we calculate the major normalized quantity which is defined as foliows

<Iy> = (11 (k)2 (v/V)
= 20(ET Ay Y ) ET g AunY ) F(k, K)o [(Koykika ' Z.a
where an are the normalized spherical harmonics, {Y,mo(e.o)). Z s the distance ot penetriti
n'(n" or n™) is the index representing / and m; r is the radial distance from the (emter v L
observation point, v is the volume of a single scatterer and V 1s the whole scattering .+ = -,
in Eq. (25) is given as
F=l4n] [Gx)-1]exp[i(Kk,-kr'r)+x]dx

For spheres, the radial distribution function depends only on the separatir tox - o

is performed numerically using tabulated values of Gix from M nte o u S
integral equation for non-overlapping spheres. For non .pheria. « are =
Integrations on orientation and distance and the integration < ™o e

again obtained from Monte Carlo simulatnon
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s
N 3. RESULTS AND DISCUSSION

4

In order to study the characteristics of the incoherently scattered wave intensity, we choose electromagnetic
. waves as probing waves simply because there are a number of applications in remote sensing.

By sending plane electromagnetic waves through scatterers we intend to find, first, the angular dependence of the

incoherent intensity and the influence of different polarizations, e.g., vertical and horizontal polarizations. If it is not

Poe specifically mentioned, scatterers are assumed to be spherical or spheroidal ice particles with a relative dielectric

o constant £ = 3,168 embedded in air. Fig. 2 presents the normalized incoherent intensity versus observation (scattering)

angles. The forward scattering angle is, in our case 0° and therefore the backscattering direction is 180°. The

nondimensional frequency considered is 0.6 which is equivalent to a physical frequency of about 14 GHz if a 2 mm

q particle is considered.

- Taking a further look at Fig. 3, we can conclude that the vertical polarization gives more angular dependence of

the incoherent intensity than the horizontal one. There is an extremely low intensity (i.e., a deep minimum in the

- curve) that occurs at 90° at a ka=0.6. This phenomenon happens again, however, at a higher observation angle of 125°

when the frequency ka is raised to 2. There is no polarization difference at the forward and backscattering directions for
the incoherent intensities.

In Fig. 4, we compare the backscattered intensity calculations with and without the effect of pair correlations.
= These results tell us that if the intensity is calculated without considering the pair correlation function when the
concentration becomes even moderately high, i.e., 5%, one is able to see the difference in the magnitude particularly in
the low frequency range.

Finally, we want to say something about the effect of the pair correlation function. In order to tell the
importance of its effect on the final first order scattered intensity, we simply calculate the function F which appears in
(3 Eq. (25) and has been defined in Eq. (26). As can be seen from Eq. (26), it involves a Fourier transform of the pair
correlation function and it contains an effective propagation constant K; hence it depends on the properties of the
scatterers, the concentration, frequency and angle of observation. In Figs. 5 and 6, we can see that the Fourier
transform of the pair correlation function dominates the scattering response particularly in the low frequency range and
in the forward direction. In the high frequency range, it does not affect the scattered intensity much. Also, we observed
A that the intensity decreases after a volume fraction c = 15% , which is also a fact pointed out in Kuga's experiments.
i From Fig. 7, it is clear that the difference in obtaining the effective K is quite large if the spherical statistics is
employed in approximating the nonspherical statistics. Therefore, for nnonspherical scatterers of considerable
concentrations, the incoherent intensity can be mistakenly estimated using Eqs. (22), (23) and (24) which all involve

F,. the effective wavenumber K. In addition, the pair correlation function G(x) in Eq. (26) may even contribute more to
o the difference depending on the concentration and the observation angle considered.
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e
o ABSTRACT
Cle, . .
Recently, an interesting phenomenon has been reported as a result of a series of optical backscattering
S experiments conducted using colhmated light sources (lasers). A locally high intensity maxlmum has been observed
i‘ . intherangeof X —e<B<xm+¢€ where € is of the order of millitadians and g = m is the backscattering direction.
Albeit similar phenomena found in backscattering from various random media, e.g., scattering of electrons by
.}: impurities in metals and light scattering from random rough surfaces, this is the first observation of enhanced

backscattering from suspensions.

In this paper, based on multiple scattering theory, we use the improved two scatterers T matrix program, which

Y

takes all back and forth scattering into account between two scatterers and considers the multiple scattering effect, in

" the intensity calculation. The widths and magnitudes of the backscattered intensity peak of our computations compare
:": favorably with those of optical experiments.
= INTRODUCTION
a Backscattering enhancement or similar phenomena have been observed in various backscattering experiments,
<y for example, the Anderson localization from scattering of electrons by impurities in metals [Abrahams et al., 1979 ;
:_,:: Bergmann, 1984], scintillation in turbulent mediat [Yeh et al,, 1975; Rino et al, 1982] and speckling from light
. scattering by random rough surfaces [Dainty, 1984; Hecht, 1986]. And generally speaking, the enhanced backscattering
E» can happen when (i) waves scattered by turbulent media - continuous random media (c.g., atmosphere); (ii) waves
scattered by a collection of randomly distributed scatterers with high concentration; (iii) waves scattered by moving
-z: scatterers or by scatterers having Brownidn motion; (iv) waves scattered by scatterers (moving or stationary) in a
(W turbulent medium ; (v) waves scattered from random rough surfaces; (vi) waves scattered by scatterers in front of a rough
=
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=4
m boundary.
- The reason for this is partly that although waves are travelling in random media, the propagation of waves in
such media (cases (i) - (vi)) is accompanied by multiple scattering as well as specific coherent effects and the
‘- enhancement is caused by positive interference of all the scattered waves. The recently observed enhanced
backscattering phenomenon from dense suspensions appears to be the similar result which cannot be explained by
_".,. radiative-transfer theory. Albeit the cyclic diagram in conjunction with point scatterer approximation introduced in
- multiple scattering theory to explain the enhanced backscattering [Tsang and Ishimaru, 1985], however, the
- experimental observations ail deal with scatterer's size large compared with the incident wavelength [Kuga and Ishimaru,
;".' 1983; Albada and Lagendijk, 1985; Wolf and Maret, 1985]., and therefore a detailed computation based on anisotropic
scattering for finite size scatterers is essential. In addition, the back and forth scattering between a pair of scatterers,
1: which has been neglected in the ladder approximation, may have major contribution toward backscattering rather than
in the forward direction mentioned in one previous paper [Bringi et al., 1980] coauthored with us.
_: In this paper, based on multiple scattering theory, we use the improved two scatterers T matrix program, which
r takes all back and forth scattering into account between two scatterers and considers the multiple scattering effect, in
0" the i'nLensity calculation. The widths and magnitudes of the backscattered intensity peak of our computations compare
:i: favorably with those of optical experiments.
i i INCOHERENT INTENSITY FORMULATION
The detailed derivations and intermediate steps id ohmiuing the final expres;ion for.'intcnsity can be refcr‘rcd to
-, our paper (Varadan et al., 1987). The average incoherent intensity < I > can be obtained as follows
-.: <[> = n, < Iujlz > drj ‘
+ no2 if < “k“j‘ >k g(rjk) dry drj
! - n°2 II< Uy >k < “j. > dry drj )
where o is the number density ( n,= N/V), uy is the scattered field from the j-th scatterer, < >j and < >k are
‘:'; conditional configuration averages holding the positions of the j-th and both the j-th and k-th scatterers fixed,
- respectively, and g(rjk) the radial distribution function for spherical scatterers. Equation (1) is an exact expression for
- the incoherent intensity < I > .
::: In order to perform the computation, we need to make approximations for the expression of < lujl2 > and
. < “k“j. > which are both unknown, in terms of the effective exciting field < uy >, Wwhich is known [Varadan et al,
: 1985]. By neglecting higher order statistics and conmsidering only the two particle pair correlation function {Varadan et
" al., 1987], we can obtain
‘ <l> = Tf(¥Tcds ) ¥iTcd )
7} so, 2 T Toy T8 cakoy 119 Tap T < o5 1"g(ryy) ar) dry
o v TP Tay T TR <a5, ] x
: H N *
. x (W T oy T o T < 0™ > 17 8(ry) 8(ry ) i dry dry
v
e
4
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. + ... ( ladder diagrams)
-
~ so B (R TE cof > 1W< o 51" [y - 1) drjar,
N L - .
. 2 K~k IR k ok ) dr;
‘S + nOZZH[‘l‘ k'I' k<3kj'l'1< u1>1k][\!‘ T o TC < & >y ] g(rjy) drjdry
j 4
o +n°‘2.H[‘l‘ T °k_jTj"’jkf <af>p)x
Mo, .7 . . .
z x [T oy T80 T < o 51" g(ryy) drany
+ ... (cyclic diagrams ) 1€))
- In Eq. (2) 'I'j is the T - Matrix of the j-th scatterer [Varadan and Varadan, 1980], wKis the outgoing function (Hankel
tf;' function) of the k-th scatterer and °kj the translation operator. Each term of the two series in (2) represents a certain
. order of scattering. For the same order of scattering, the cyclic terms are proportional to a higher power in the number
~'.’, density. Thus at low concentrations cyclic terms contribute less than the ladder terms to the the same order of
scattering. Eq. (2) can be represented diagrammatically as follows,
i" (a) Ladder Diagram
3' 3 ? X X
“«——Q <KD, & o O« <K >
) " 3
o + +eoss
N "* . ‘*
- ——0— - =& 3 ¢« —-g - —— ~—--<«% >
(b) Cyclic Diagram
. »
o~ K X K K
o o) < < <ot >
o [
{ 4
+ o f] < s ©
it v ? i ¥
| = =0& - = D, “ —- So&E——<Kx). E——0& - — x>,
- J ) ) J ) o)
: In fact the so called cyclic terms can all be summed if one replaces the infinite series in (4) with the T-matrix of
a pair of scatterers which considers all the back and forth scattering between them. The back and forth scattering
:; between a pair of scatterers, which has been neglected in the ladder approximation, may have major contribution
f)
o toward backscatlering rather than in the forward direction mentioned in one previous paper [Bringi et al, 1980]
™, coauthored with us. Eq. (4) may hence be written diagrammatically as
~
~ . X
I3 < < <ot 2
kK (5
- T
r.. _;g-
ro & — - = - = 0,
J
,.‘:- where Tjk , the two scatterer T- matrix has the following form [Varadan and Varadan, 1981]
) TE 2 RCr P 1 -0tr) TCotr ) T 17! (14 0r) TR() 1 R- 1)
~
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In the above expression, R( r, ) is the regular pa:t of the translation matrix o( L) Tk = rj -rpand ry = (rj + )2

RESULTS AND DISCUSSION

In general, at low concentrations, both the magnitude of scattered intensity and multiple scattering coutribution
are not strong enough to reach the threshold of the enhanced backscattering. When the enhanced backscattering
happens, the width of the intensity peak is proportional to .the imaginary part of the effective wavenumber. Ia other
words, the width is inversely proportional to the mean free path which is getting smaller when the concentration is
getting larger (the average separation distance between two scatterers is getting smaller). The calculated mean free
path length, which compares very well with that of the experiment, and the data used in the intensity calculation are
shown in Table 1.

To perform the calculation, one needs to adopt the cylindrical coordinates instead of the spherical one to match
the experimental set-up which brings the complexities in converting the spherical functions to their cylindrical
counterparts. Furthermore, in order to compare with the experimental results, especially the magnitude and the width
of the intensity peak, the proper integration limits must be taken care of very carefully. The widths and the
magnitudes of the backscattered intensity peak of our computations compare favorably with those of Albada's
experiments in which the receiver used has a very small field of view and, hence, gives a much better signal'
resolution (see Fig. 1). However, due to the truncation of the orders of scattering due to the tremendous amdunt of -

CPU time required, we did not obtain a full match.
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f'a Table 1. Data used in the calculation [Ref : Albada and Lagendijk, 1985] |
Concentration n, (i) 14.1 x 1016 /m3 (corresponding volume fraction ¢ = 0.09587) ) .
3 (i) 348 x 1016 /m3 (c = 0.02366) .
N (i) 149 x 1016 /m> (c = 0.01013)

N

! Particle size d = 1.091pm (in diameter)

~ Refractive index n (latex 5100) = 1.6

- Refractive index n (distilled water) = 1.33

E He-Ne laser wavelength A = 633 nm

Noodimensional frequency kd (2nd/A) = 1Q.8294 (>> 1)

Calculated effective K = K1 + iK2

’

o @ Kk, = 1.01266, Ky/k,, = 0.1514 x 1671 (¢ = 0.09587)
‘ ()  Kyfk, = 100231, Ky/k,, = 03839 x 1072 (¢ = 0.02366)

ot @) K /k, = 1.00093, Ky/k,, = 0.1618 x 1072 (¢ = 0.01013)

o Mean free path (Albada's experiment) = 2.6 pm ( for n, = 14.1x 1016 /m3)

\ »

. Calculated mean free path (from K,) = 2.5 um
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ABSTRACT

This paper investigates the second momen.t (average inlensil-)‘r) of an EM ‘wave field propagating in a med.ium
containing densely'dislribuu:d nonspherical scatterers whose positions are nndm;:. The effective propagation
constant K obtained from our previous work, using the nonspherical statistics in the investigation of multiple EM
wave scattering by aligned prolate and oblate dielectric spheroids, and the appropriate pair correlation function for
nonspherical scatterers obtained by the Monte Carlo method are required in implementing the moment equation to get
the numerical results for intensity. The comparison bctween the results using correct nonspherical statistics and
approximated spherical statistics indicates that even a small difference for the effective propagation constant K will
produce a remarkable difference in intensity. Numerical results for average intensity scattered by spherical particles
using our intensity formalism are also presented and compared with some microwave measurements. The extension of
the present work is to study wave propagation in a medium containing a random distribution of randomly oriented

nonspherical scatterers and investigate the isotropic properties of the medium.

INTRODUCTION
The statistical moments of a wave propagating in a random medium are of great imterest for use in
communication, probing and remote sensing. The present paper following the trace of our previous work, iz which
the first moment of a random wave ficld has been carefully investigated using appropriate statistics, starts to
examine the effects of nonspherical statistics on the sccond moment (average intensity) of a wave field propagating
in a medium coosisting of randomly distributed nonspherical scatterers. In our intensity formalism, shape factor, size

distribution, orientation distribution and physical propertics of scatterers cam all be considered, however, the
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intensity equation for densely distributed scatterers requires the pair correlation function which is available at the

present time only for simple shaped scattercrs with special alignments.

To make the problem tractable, sonspherical scatierers with rotational symmetry propertics randomly distributed
in free space are first considered. Scatterers of this kind whose scattering respoanses are able o be respresented by
the T-matrix [Varadan and Varadan , 1980). Further, we consider only the aligned case which means the symmetry
axes of the scatterers are all parallel to the direction of the incident wave.

In the calculation of intensity, without losing generality, we used the distorted Bomn approximation in the
intensity equation in which the required effective propagation constant K is obtained from our previous work
(Varadan et al., 1986, 1987] using the nonspherical statistics in the investigation of multiple EM wave scattering by
aligned prolate and oblate dielectric spheroids. The pair correlation function for nonspherical scrtterers is obtained
by the Monte Carlo method which has been introduced in our paper [Varadan, et al, 1987]. The comparison between
the results using correct nonspherical statistics and approximated spherical statistics indicates that even a small
difference for the effective propagation constant K will produce a remarkable difference in intensity. Numerical results
for average intensity scattered by sphcricai particles using our intcnsity formalism are also presented and comparcd

with some microwave measurements.

MULTIPLE SCATTERING FORMULATION FOR THE INTENSITY

We consider N(N — <) rotationally symmetric oricated scatterers randomly distributed in a volume V(V — o) 50
that the number of particles per unit volume 0y = N/V is finite. For the scattering of waves by those scatterers
located at Tt a0y, WE r'c'prcscnl the total ficld outside the scatterer by'

Ur) = u(N+Z Y {r- rj). (1)
where U, is the incident wave field and Y the ficld scattered from the j-th scatterer. If the scatterers are randomly -
distributed in space, the total fleld can be divided into two parts and expressed a3

Ur) e<Ur)>+v. (1-a)
We call < U(r) > or < U > the average or coherent field and v the fluctuation or incoherent field. The angular
brackets < > represent the configuration or ensemble average whose definition is quite common in suu‘stic:.‘

Similarly, we average the "intensity” (or the second moment of the field) |U|2 over the ensemble, and write the
"average total intensity” as

<UP>=|<UsPscivi>

=l<U>R+V : @
where | < U> |2 is the cohereat intensity and can be determined if the average field < U > is known. However, th~
incoherent intensity V which is the ensemble average of the absolute square of the field fluctuation is not a dircctly
obtainable quantity. By the use of (1) and some operation rules for the configuration average, the incoherent
intensity V in (2) can be wrilten as

V-E<Iuj|2> +£2<ukuj.>-£}:<uk><u..> )]

J
represents the complex conjugate of the altached quantity. (3) is a finite sum though “N*,

nynr

where the superscript

the number of scatterers, can be fairly large; its computation becomes impractical even for a moderate N and in most
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: g cases impossible. In terms of an appropriate ;robability distribution function and the conditional configuration
I u average, (3) can be expressed in the following integral form
AR . - 2 5. dr.
3 v n, < i >, drJ
e .
::':- L + n°2 H < ukuj >]k G(rjk) dl’k dI'J
e -
IS - n°2 I < U > < uj‘ > dry drj 4)
W

where < >, and < >, are conditional configuration averages holding the positions of the j-th and both the j-th

L J J

and k-th scatterers fixed, respectively. G(rjk) the pair correlation function, for aligned spheroidal particles, can be
expanded in the Legendre polynomials as [Varadan el al,, 1987]

4:4: G(r) = I, g,(r)P,(c0s0)

where the coefficients depend on the distance between particles and aszimuthal angle and implicitly on the

concentration of scatterers. For spherical scatterers, the pair correlation function becomes the radial distribution
function g(r k) upon which spherical statistics bases. Eq. (4) is an exact expression for the incoherent intensity V.

- If the scatterer locations are random and independent of one another, oanly the first term on the RHS of (4)
. remains. This is the single scattering approximation to the intensity, Otherwise, in addition to incoherent single
scattering, a relatively coherent intensity appears a3 the contribution of the second term grows. As the concentralion
- of scatterers increases a local order is introduced in the ne.ar field of the scatterers since the particles can oaly be
- packed in a limited number of ways. In order to procecd further with the computation of the incoherent intensity as

stated in (4), we need expressions for <up> J, <|uj|2>; and <ukuj‘>.

D- l B ! . . .
In order to calculate the incoherent intensity V from (4) an approximation needs to be made for < lu‘ir2 >j s
well as for < “k“j‘ >k which are both unknown. If we consider only first order scattering, we can use the distorted
[ Born approximation (DBA) as follows:
< uk"j. >ik & < Uy >p< uj. >j . (5)
This approximation was used by Twersky [Twersky, 1957 in solving the rough surface scattering problems and has

IS
Rl
Sata ]

.

subsequently been used by several other authors. Using (5), in the distorted Born approximation, (4) can thus be

e

AN written as
® .
. .. Va > . . :
o B, ) <2uJ >i< Yy > drj.
.‘J . . . el T
+ 0" Il <y >y < up > Glryy) - 11 dry dry (6)
-_: Equation (6) represents the mcohcrent intcnsity in the DBA. Its source is the coherent field, <u)>) Later we
= ..
. o show that the average scattered field < Yj >4 is related o the average exciting field when we neglect the field

fluctuations in the field exciting a scatterer. Equation (6) tells us that the second term has a contribution to the

@

intensity whenever the i-th and j-th scatterers are close to each other (position dependence), otherwise the
contribution can be neglected. Eq. (6) is a deterministic equation since only the average exciting field is involved

and the calculation is straight forward as long as the pair correlation function is known.
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To compute the intensity in the DBA, or to proceed further with the analysis of (4), we need an expression for
the coherent field. For a single scatterer, the scattered field from the j-th scatterer can be expressed as
y = v . )
where fn-’ are the scattered field coefficients and \PnJ the outgoing functions (Hankel functions). The scattered ficld

coefficients fnj and the exciting field coefficients cxnj are related through the T matrix [Varadan and Varadan, 1980] :

f‘“J =X Tnnrl anJ . . (8)
Substituting (8) into (7) and taking the conditional configuration average, we have
<u> -ZZ<Tnnjanj\Pnj > (C)]

Further, to simplify the computation, we assume the shape, size, and physical properties of all the scaticrers are
independent of their positions. In such a case, (9) can be written as

<u >j =X ET“fi < °nj >j‘~l’n-' . (10)
where the exciting ficld coefficients of the j-th scaticrer can be shown to be [Varadan et al, 1985]

o)« ad + LEE opptry - )Tyt ok an

In (11), anj arc the incident field coefficicnts of the j-th scatterer and Oon' is the translation matrix for spherical
wave functions. Although unj are, in gencral, unknown for 2 random distribution of scatterers, their conditional
average < Pnj > (average exciting field coefficicats of the j-th scatterer whose position is fixed) are assumed to
have the following form [Varadan et al., 1985]

. <ag) >y X, exp (i Kkger) . _ , (12

" which states that for an incident plane wave ficld, the average exciting field propagates with a new propagation

constant K along the incident wave direction k,. The new propagation constant K is complex snd frequency

dependent and can be oblained by solving the dispersion cquation (Varadan et al.,1986).

RESULTS AND DISCUSSION

In order o show the cffect of nonspherical statistics on intensity, results based on the approximation for
randomly distributed spheroids using single scattcring theory and .the spherical statistics (Circumscribing Sphere
Approximation and Equivalent Volume Approximation [Varadan el al., 1986] are compared with those using
nonspherical statistics. We have picked values of the effective wavenumber, which is obtained using the
nonspherical statistics in the investigation of multiple EM wave scattering by aligned projate and oblate dielectric
spheroids (Varadan et al., 1987), and uscd them to compute the intensity and show the results in Figs 1 and 2. Onc
sees from both figures that, off-forward scaltering at the fixed frequency as well as forward scattering at different
frequencies, without using the correct pair statistics for nonspherical scatterers, the computed intenties are quite
different from case to case. This fact explains why it is pecessary to introduce the nonmspherical statistics into the

intensity calculation.

To check the validity of our formalism, we compared our incoherent intensity calculations with the microwave
experiments conducted by Beard et al. [1965]. The transmitted intensity was calculated using the DBA as given in

(6) where 0 = 0° represents the forward direction. This calculation is based on the experimental sct-up which
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consists of a slab rcgion styrofoam containcr, for various concentrations of scatterers at the fixed frequency. For the
. case ka = 20.8 for lenuous scatlerers with rclative index of refraction 1.016 the computed results match very well

with the measurements for off-forward scattering as depicted in Fig. 3.
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(6) where 8 = 0° represents the forward direction. This calculation is based on the experimental set-up which
consists of a slab region styrofoam container, for various concentrations of scatterers at the fixed frequency. For the
casc ka = 20.8 for tcnuous scatterers with relative index of refraction 1.016 the computed results match very well

with the measurements for off-forward scattering as depicted in Fig. 3.
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Effects of nonspherical statistics on EM wave propagation in discrete random media
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Barlier results for electromagnetic wave propagation in discrete random media assumed
spherical statistics for describing the spatial distribution of even nonspherical scatterers. The
sppropriate pair correlation function for nonspherical scatterers can, in general, be obtained by -
the Monte Carlo method which is essential in analyzing nonspherical statistics. This paper
presents new results using nonspherical statistics in the investigation of multiple
electromagnetic wave scattering by aligned” dielectric prolate as well as oblate spheroids
randomly distributed in space. Comparison between previous results using spherical statistics
and present calculations show that approximating the spatial distribution of noaspherical

.scatterers using spherical statistics will yield effective medium characteristics that differ quite
widely. Of all approximations using spherical statistics for non-spherical scatterers that using
an equal volume sphere appears to be the best if the actual statistics are not available:

1. INTRODUCTION

1n many radar applications, multiple scattering effects cannot
be ignored [Ishimaru, 1978; Oguchi, 1981; Olsen, 1982). In
most thearetical investigation, scatterers are assumed to be
spherical in shape and bear a uniform size distribution,
although this may not be practical [Bringi et al., 1983; Mathur
and Yeh, 1964; Twersky, 1978; Varadan et al., 1979, 1983).
When the volume fraction occupicd by the spheres hecomes
large enough to consider their relative positions, detailed
kmowledge of the positional distribution of the scatterers is
needed. This entails a consideration of inter-body forces as in
the many body problem of statistical mechanics. At a
minimum, the pair correlation function is required in analyzing
the problem. In nature, unfortunately, scatterers are not simple
in shape and some results have been reported for nonspherical
particles [Tsang, 1984; Lang et al,, 1986; Varadan et al.,
1985]. However, to appropriately model the real situation,
deviation from a spherical scatterer still keeping the rotational
symmetry of the scatterer appears to be an improvement to the
previous model that permit us to study the shape effect. A
simple nonspherical scatterer happens to be 2 prolata or oblate

Copyright 1987 by the American Geophysical Union,
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spheroid . The scattering response of a single spheroid can be
simply represented by the T-matrix {Varadan and Varadan,
1980]. 1f the concentration of the spheroidal scatterers (in this
case, lossless dielectric prolate{oblate) spheroids ) happens to be
small, random lattice gas statistics can apply, otherwise the
spatial distribution of these nonspherical scatterers cannot be
described by spherical statistics. The reason, which is quite
obvious, is that the pair correlation function, instead of being
a function of only the separation distance between a pair of
scatterers, becomes also a function of the orientation of the
vector joining the twononspherical scatterers, To just see the
shape effect and distinguish this from the previous
approximations using spherical statistics, we consider only the
aligned case. Further the direction of wave propagation is
restricted to be along' the rotational axis of symmetry of the
aligned spheroids. We emphasize that arbitrary orientation
(including random orientation) of nonspherical scatterers will
not cause major difficulties in the theoretical analysis but we
leave this to a future analysis.

The nonspherical statistics involved In the analysis is the pair
correlation function for aligned spheroids. It is well known that
the Moate Carlo simulation method has yielded superior
numerical results for the radial distribution function of densely
distributed hard spheres [Barker and Henderson, 1971), with the
help of advanced digital computers. Therefore, in this paper, we
will briefly discuss the application of the Monte Carlo method
in obtaining the pair correlation function for aligned spheroids,
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X
Fig. 1 Multiple scattering of waves in discrete random media
with positionally and orientationally correlated nonspherical
scatterers.

Finally, computations of the effective attenuation rate using
nonspherical statistics in studying electromagnetic wave
propagation through randomly distributed aligned spherpids are
performed. Comparison between previous results using
sphencal statistics and present calculations show that
appm:umaung the spatial distribution of nomphencal scatterers
using spherical statistics will yield effective medium
characteristics that differ quite widely. Of all approximations
using spherical statistics for non-spherical scatterers that using
an equal volume sphere appears to be the best if the actual
statistics are not available.

2. MULTIPLE SCATTERING FORMULATION

In this section, the average field in the random medium is
written as a partial summation of a multiple scattering series.
By assuming that the average field is a plane wave with an
effective wave number K, the resulting dispersion equation is
solved. The formalism is general and applicable to any types
of wave. Only the most important details that lead to the
dispersion equation involving the pair correlation are presented
and for all intermediate steps, we refer the reader to (Varadan et
al,, 1979]. Vector notation is dispensed with, but the
formalism is equally applicable to acoustic fields satisfying the
scalar Helmholtz equation, or the electromagnetic field
satisfying the vector Helmholtz equation.

Let the medium contain N aligned, randomly distributed
spheroidal scatterers in a2 volume V such that N = e, V

= e butn, = N/V the numberdensuy of scatterers is finite,

see Figure 10 Let u, uO, u€;, ud; be respectively the total field;

the incident or primary plane, hamomc wave of frequency ©;

the field incident or exciting the ith scatterer; and the field
which is in turn scattered by the ith scatterer. The time
dependence exp(-ict) of all fields is the same and not written
explicitly.

These fields are defined at a point r which is not occupied by
one of the scatterers. In general, these fields or potentials
which can be used to describe them satisfy the scalar or
vector wave equation. Let Re Qnmeuondmote the basis
of orthogonal functions which are eigenfunctions of the vector
Helmholtz equation, The qualifiers Re and Ou denote functions
which sre regular at the origin and outgoing at infinity which
are, respectively, appropriate for expanding the field which is
incident on a scatterer and that which it scatters which in tum
must satisfy outgoing or radiation conditions. Thus, we can
write the following set of self-consistent equations:

u - Il°+ zi-l I.l’i - Ileid-ﬂsi

- llo+ §~‘ \I’jﬁ-\l’i (1)
W) = Bexplikkyr) =Z, a)l Re 9y r-ry @

- I a:.Re or-r) acir-ri<22 0
¢ e Lo er-n tr-rl>a @

where ol and f lm unknown expansion coefficients. We
observe m(3)md(4) that a is the radius of the :phere or ’
cylinder (foc two-dimensional problems) circumscribing the
scatterer and that all expansions are with respect to a coordinate
origin located in & particular scatterer,

The T-matrix by definition :imply relates the expansion
coefficients of u®; and u®; provided u®; + u3; is the total field
which is consmem wuh the definitions in (1). Thus, see
Varadan and Varadan [1980],

‘I‘li - ¥ ' Tm- a n'l (&)

and the following addition theorem for the basis functions is
invoked

Ou @p(r=rj)= L yOpq(ri-rRedpir-r) (6

Substituting Eqs. (2) - (6) in Eq. (1), and using the
orthogonality of the basis functions we obtain

ai - li + zjﬁiﬁ o'(ri'-rj) Oi (7)

This is a set of coupled algebraic equations for the exciting field
coeflficients which can be iterated and leads to a multipfe
scattering series.
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For randomly distributed scatterers, an ensemble average can
be performed on Eq. (7) leading o

<ai>l -Ii + < g (ri-rj)'rj <G’>IJ >l (8)

where angle brackets and ijk... denotes a conditional average and
(3) when iterated is an infinite hierarchy involving higher and
higher conditional expectations of the exciting field
coefficients. In actual engineering applications, a knowledge of
higher order correlation functions is difficult to obtain, and
usually the hierarchy is truncated so that at most only the two
body positional correlation function is required.

To achieve this simplification the quasi-crystalline
approximation (QCA), first introduced by Lax [1952] is
invoked, which is stated as

Then, (8) simplifies to
<ai>i - ai + <o(rl—rj)'rj<ai>j> i (10)

an integral equation for <<al>>i which in principle can be
solved. We observe that the ensemble average in (10) only
requires P(r; r,), the joint probability distribution function. In
particular, {he homogeneous solution of (10) leads to a
dispersion equation for the effective medium in the
quasi-crystalline approximation. Defining the spatial Fourier
transform of <ag?a :

<d>i -] K°F xikyax an

and substituting in (10), we obtain for the homogeneous
solution .

X (K= L owi-r) T iy

x ¢lK*@r-Tp dr; X (K) 12)
If the scatterers are identical
Xxi(K) = xi(K) = X(K) a3

and thus for a nontrivial solution to <ai>i, we require
l 1-3f o(ri—rj)ij(rjlri)eiK c(r-rp dr; I -0 (14)
j=

[n (1?) and (14), P(rjlri) is the joint probability distribution
function, For isotropic or spherical statistics,

0; lri-rjl < 2a

P(rjlrl) - { (15

where we have assumed that the scatterers are impenetrable with
a minimum separation between the centers, and in (15), 2a
could be the diameter of the circumscribing sphere in
three-dimensional and circle in two-dimensional, or 2a could be
the diameter of a sphere of equal volume. Equatioa (15) is the
one that has been used in previous calculations for nonspherical
scatterers and hence this equation leads to the use of spherical
statistics for nonspherical scatterers. We observe that in (15),
the joint probability distribution depends only on the
interparticle distance and not on the orientation of the vector
joining the centers and the function g( Iri'-rjl ) is called the

radial distribution function.

If the concentration of nonspherical particles is not small,
then it is incorrect or at best spproximate to assume that
isotropic statistics are valid. In this case we assume that the
radial distribution function depends not just oa the magnitude
of the vector joining the centers of two spheroids but also on
the orientation of this vector, For aligned spheroids which are
rotationally symmetric, the dependence is only on the angle 6
between the separation vector and the symmetry axis which is
taken to be the z axis of the coardinate system, as shown in
Figure 1. There is no dependence on the azimuthal angle ¢.
The joint probability distribution function is then written as

shri-rn/vilr-ri>2

0; |'i"'"j|< R(0)
Perjlr) - (16)
G(r.O)IV:lri-rjl > R(0)

In the above equation, G (r, 0) is the pair correlation function

for aligned spheroidal scatterers (details in the next section),
and R(0) is the minimum center to center distance when the
spheroids just touch one another at one point, such that the line
joining their centers subtends an angle 9 with the symmetry or
z-axis of the spheroids. In this case the statistics are not
isotropic but are a function of direction.

If (16) is substituted in (14), we get the following integral
involving the pair distribution function when the explicit form
gf the translation matrix is substituted and exp (i K« (r; -rj))
is written as an expansion in regular wave functions (Bringi et
al., 1981}

r
JHy] = 2o (22 + 1 )IosinOde x (17)

![(9? (t, 8) jy, (Kx) hy (x) Py (cos8 ) Py ( cosB )rldr
where Plgcoa 0) is the Legendre polynomials and ja and hy are
the spherical Bessel and Hankel functions, respectively, We
note that the lower limit of the integration ¢n the r- variable
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(v)

Equivalent Volume
Assumption

Fig. 2 The equal volume sphere and the circumscribing sphere assumption.

depends on the angle 6. This double integral must hence be
performed numerically. If isotropic statistics are ysed on the
other hand, i.e., (15) is substituted in (14) and as in (17) the
explicit form of the translation theorem is used, then (17)
sit  uifies to

UHL] -« 6 mjk (2Ka) h'l(zkl) -
2Ka j, 2Ka) by (Zka) 1/ { (ka)? - (Ka)? }
+ 24¢ J (gx) ~11 j5, 2Kax) hy@2kan) 32 x

Equation (18) is actyally a special case of (17) and c is the
concentration (c=4xa %21, /3) of volume fraction occupied by the
scmerenlndlisu:endluohsphmofvolmequalwthe
scatterer. - The prime denotes derivatives with respect to the

(18)

argument of the Bessel and Hankel functions. The first term in
(18) is usually referred to as the “bole comection” term. This
only takes into effect that the scatterers cannot penetrate one
another and does not take into account positional correlations.
We further notics that the integral in (18) is only in one
variable unlike (17) which contains a nested double integral.
The “hole correction” appears in analytical form in (18), since

. e’ d
2.0 — 90°. 2q
1 a8
] /// 00
1.8 =
\}:\( / C=015, b/a=1S
W3N
G(R,8) .
n,s—:— —b'
] J 8 -
.9 : R TI
-c.s—:— ¢
-1.0 ] l | | !
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Fig. 3 Pair distribution f'inction for random prolate spheroids using Monte Carlo simulation.
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Fig. 4 Auenuation vs. nondimensional wave number using
different statistics, and comparison with single scattering
approximation for prolate spheroids of aspect ratio b/a = 1.5
and concentration of 5%.

the excluded volume is a sphere of radius 2a, where a is the
radius of the equal volume sphere. In (17), it is difficult to
wparate the "hole correction” term since that must also be
numerically. :

Equation (14) is a determinantal equation, the roots of which
can be solved for numerically to yield the values of the effective
wave number K = K, +iK; as a function of the frequency via
k= @/, the shape, size and orientation of the scatterer via the
T-matrix, and the statistics of the distribution via the joint
probability distribution function. The effective wave number
which describes wave propagation characteristics in the
composite medium.

The details of numerically simulating the pair correlation
function for spheroids is outlined in the next section.

3. THE PAIR CORRELATION FUNCTION
FOR ALIGNED SPHEROIDS

The pair correlation function for aligned spheroidal particles
can be expanded in Legendre polynomials as

Gr8) = 2 g(r) P, (cos8) (19)

where the coefficients g(r) depend only on the distance between
particles (see Figure 1). The coefficients g(r) can be evaluated

during the Monte Carlo simulation by using the onhogon:l!ily
of the Legendre polynomials and (18) can be inverted 10 give
[Streett and Tildesley, 1976)

(0 = (U + 1)<Plcos 0 )>gpey /0 V(G AT)  0)

where < > is the average for all particles in the spherical shell
with radius r to r + Ar of volume V(r; Ar).

The Monte Carlo method in statistical mechanics refers © a
computational scheme for estimating averages of the following
form

< = Jgtoorcoax: JqPoodx @i)

where X = (r(, Fa, w. Pjpuwe. Fpy) With 7y the-position vector of
the ith particle and f(X) is any well-behaved function of X and
P(X) is a probability density function of X and for hard bodies
has the form

PO = exp{- U}, B =1/xT )

where U(X) is the potential energy of the system and x is the
Boltzmann constant.

Furthermore, the Monte Carlo method in its basic form
consists of defining and realizing a Markov process in X space,
which is the configuration space in this case. Chain averages
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Fig. 5 Same as Figure 4 but for prolate spheroids of aspect
ratio b/a= 2,
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i T approximation that the relative position of a pair of spheroids '
-2f 4 may be replaced by that for a pair of spheres which )
- - : circumscribe the spheroids (we call this the circumscribing ‘
. s p sphere assumption). These two assumptions are explained
ot " - graphically in Figure 2. Some representative plots of the pau a
i 1 correlation function G(R,9) is plotted as a function of the !
. .3l ) interspheroid distance for various angles for prolate spheroids \
- 10 F 3 of aspect ratio 1.5 at a concentration of 15% in Figure 3. In y
F ] Figure 4, the equivalent volume spherical statistics and the :
L 4 circumscribing sphere statistics are compared with the i
= ImlkzL ] spheroidal statistics for an aspect ratio of 1.5 at a concentration i
of 5%. We note that the circumscribing sphere statistics are q
"~ o*E 3 limited to very low volume fractions at high or low aspect ¥
E 3 ratios because the circumscribing spheres begin to overlap even :
= r ] at low spheroid concentrations.
- 3 | In Figure 4, the attenuation which is normalized with respect
1’ to k, i.e. (Ky / k) is plotted against the nondimensional
_ SE / T reoaveoar frequency kb for prolate spheroids with an aspect ratio 1.5 and
) E /! ——— MONTECARLO 1] 5% concentration. If we do not consider the pair correlation at
oo . / / === CIRCUMS. SPHERE ] all, i.e., the calculation done using single scattering theory, one
1 . sees that the results give much higher attenuation than alf other
" ¥ I . cases and this has been observed for all the computations.
— .8 R R T I A Although the circumscribing sphere assumption predicts lower
- 0°a a2z 04 06 a8 10 attenuation, for such a moderate concentration, the equivalent
kb volume assumption produces relatively good results when
Fig. 6 Same as Figure 4 but for a concentration of 15%. . compared with the attenuation using the Monte Carlo method.
This is also true for prolate spheroids of aspect ratio 2 which
are evaluated based on whether the required probability appeared
in different configurations. Readers are encouraged to go ' WRETT 3
- through the work of either Metropolis et al [1953] or Wood 3 3
. , (1968] for deails. For a system of hard particles, the required - :
- probability in accepting the configurations consists of simply i {
, checking the overlap criterion. Overlap is decided by checking
’ whether the center to center distance for a pair of spheroids is -3k 3
) less than d which ig defined by 10°F ]
d=2b[1-cos28 +cos20 /n2]"12/q @) : 1
; where 7 is the aspect ratio of the spheroid such that 1 >1 for =
~ prolate and M <1 for oblate spheroids and b is half the length S WE 3
of the axis of symmetry for the spheroid (see Figure 1), E C 3
"_ - : SINGLE SCAT. :
I )

I 4. RESULTS AND DISCUSSION T auALvoL
i // e———— WONTE CARLO
The imaginary part K, of the effective wave number K, 16°F if / = ShuERe 3
£ which is related to the attenuation in the effective medium, can - ! 3
Y be obtained by solving the dispersion equation in (17). In order - :
ety . . . . " ’ -
0 judge the effects of the pair correlation function, results L )
- based on calculations for spheroids using spherical statistics
] are also presented, i.e., using (18). In one calculation it is S ! I W E E -
E assumed that the relative position of a pair of spheroids can be a 02 04 e 08 10
approximated by that for a pair of spheres, each of which has kb
the same volume as the spheroid (we call this the cquivalemt  Fig. 7 Sanx as Figure 4 but for b/a - 2 and concentration of
-\.:, volume assumption). The other calculation employs the 15%.
':"
|
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can be seen in Figure S. However, when the concentration is’
increased to 15%, even the equivalent voiume assumption fails
to correctly predict the attenuation and , in general, it
overpredicts the attenuation. These can be observed in Figures 6
and 7.

For oblate spheroids, the attenuation is similar to that for the
prolate spheroids when the concentration is low. Two sets of
calculation for aspect ratios 0.5 and 0.67 are presented as in
Figures 8 and 9 for 15% coacentration. At such a high
concentration, for both aspect ratios, we find that the
c=o1% circumscribing sphere assumption predicts the attenuation quite
well in the low frequency range while the equivalent volume
assumption ylelds better results when the frequency is
£ou. voL. increased. However, both approximations cannot be compared
CIRCUI SPH. with the Monte Carlo method in'a certain band width when the
MONTE CARLO concentration is high.

In conclusion, we would like to emphasize the importance of
using nonspherical statistics in analyzing the scattering from
densely distributed nonspherical scatterers. The approximations
made for the spatial distribution of nonspherical scatterers can
produce results which either over or under-estimate the effective

el—1l Lo 1t 1 1 properties which, in this case, is the attenuation of the effective
- 0% medium. The effective phase velocity which is a relatively
:. Ka slowly varying function of frequency and concentration is
= Fig. 8 Same as Figure 4 but for oblate spheroids with b/a =  IRSensitive to thedxffumces betwecn nonspherical statistics and
0.5 and concentration of 15%. the equal volume :;.zhencal statistics. Hence the phase velocity

- plots have not been included here,
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Scattered Intensity of a Wave Propagating in a Discrete Random Medium
by
Yushieh Ma, Vasundara V. Varadan, and Vijay K. Varadan
Center for the Engineering of Electronic and Acoustic Materials
Department of Engineeri":angd Science and Mechanics

The Pennsylvania State University
University Park, PA 16802

The present paper aims at a computational scheme to obtain numerical results for the second moment (average
intensity) of a wave field propagating in a medium consisting of randomly distributed scatterers, not necessarily
simple in shape. A formalism is presented that parallells the diagram method and shows the approximations made in
the intensity computation of anisotropic scattering whenever finite size scatterers with a considerable concentration
are considered. The back and forth scattering between a pair of scatterers, which has been neglected in the ladder
approximation, automatically appears in our formalism taking into account all the multiple scattering between two
particles through the pair statistics. Sample numerical results for average intensity scattered by particles are presented
and compared with some microwave and optical measurements.

I. Introduction

Scattering of waves from random distribution of objects has received attention ever since
Rayleigh's pioneering work in explaining the color of the sky. 1. The statistical moments of a wave
propagating 'm‘ a random medium are of great interest for use in communication, probing and
remote sensing. Numerous papers have reported a study of moment equations of various kinds
(acoustic, electromagnetic and elastic) for waves in both continuous and discrete random media. As
a result, it has been shown that the first moment called the coherent field satisfies a Dyson-type
v:quau'on,2 whereas the second moment or intensity satisfies a Bethe-Salpeter type c:quation.?”4

In spite of the abundant literature on wave propagation in continuous random media, an
uneven progress still exists in scattering from dense distributions of scatterers which has an
increasing application in lidar, radar, and sonar remote sensing. The present paper aims at a
computational scheme to obtain numerical results for the second moment (average intensity) of a
wave field propagating in a medium consisting of randomly distributed scatterers, not necessarnly
simple in shape. In a previous papc15 this has been shown with the help of Feynman diagrams.6
however, formal derivations and a detailed expression of the average intensity in terms of the

T-matrix, dressed propagators and pair correlation function were not given. The formalism
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. presented here parallells the diagram method and shows the approximations made in the intensity
computation of anisotropic scattering whenever finite size scatterers with a considerable

= concentration are considered.
Unlike diffusion theory,7 which treats mainly isotropic scattering for point scatterers and
v large scatterers embedded in a medium with a large optical distance, our concern is the range
between those extremes where the validity of the diffusion approximation is fairly limited. In
addition, the recently observed enhanced backscattering phcnomenon8 appears to be a result of
multiple scattering which cannot be explained by radiative-transfer theory in which the average
intensity 1s treated in a way analogous to the ladder approximation of the Bethe-Salpeter equation.
In the formal derivation of the second moment equation based on Twersky's previous work,9 we
clearly show different orders of scattering which involve different orders of statistics and the
approximation made in order to implement the computation using the ladder diagram. The cyciic
- diagrams which involve back and forth scattering between a pair of scatterers w-as introduced in an
. ad hoc manner to explain the enhanced backscattering,m and is neglected in the ladder
approximation. In the derivation presented here, it appears automatically and takes into account all
multiple scattering between two particles through the pair statistics. This is essential for high
! concentrations of scatterers, since in this case their positions are not totally random but there is
partial order. The observation that back and forth scattering may have a major contribution to
backscattering rather than t};e forward direction has also been made in one of our previous

) papers! 1.

In our formalism, shape factor, size distribution, orientation distribution and physical
properties of scatterers can all be considered, however, till now, the most reliable calculations are
. performed for scatterers with rotational symme:try.lz’13 The reason is partly that the intensity
. equation which best predicts the scattering characteristics beyond some threshold concentrations

(when deviations from the single scattering approximation become prominent) requires information

about the pair correlation function which is available at the present time only for simple shaped

[3%]
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scatterers which are aligned. Sample numerical results for the average intensity scattered by such

particles are presented and compared with available microwave and optical measurements.

.
-';

II. Multiple Scattering Formulation for the Intensity

. -
'y

For the scattering of waves by N, not necessarily identical, scatterers located at ry,ry,.

.-r rn, we represent the total field outside the scatterer by
J ”
Ur) = ) 4}:£.Iuj (r=r)). (1
™~ where ug, is the incident wave field and Y the field scattered from the j-th scatterer. If the scatterers
:j:: are randomly distributed in space, the total field can be divided into two parts and expressed as
i Ur) = <Um>+v. (la)
: _ A We call < U(r) > or < U > the average or coherent field and v the fluctuation or incoherent field.
. +© The angular brackets < > n?presént the configuration or ensemble average whose definition is well
i— known. B
-~ Similarly, we average the "intensity" (or the second moment of the_field) IU[2 over the
. ensemble, and write the "average total intensity" as
. <IUI2>=|<U>|2+<lv|2>
<1<U>P+V . @)
: where | < U > [2 is the coherent intensity and can be determined if the average field < U > is
- known. However, the incoherent intensity V which is the ensemble average of the absolute square
5 of the field fluctuation is not a directly obtainable quantity. By the use of Eq. (1) and some
- operation rules for the configuration average, the incoherent intensity V in Eq. (2) can be written as

N ~ AN

\% =_§<luj12> +ZZ_<uku P ZZ<uk><u > (3)
J=i kel j=1 kst j31
kj
. where the superscript "*" represents the complex. conjugate of the attached quantity. Eq. (3)is a
3
f
L U S S L e




L &

NN

'l 2y

NE |

b

.’.l-'.l

»>on

B

LY

“n
P

vw'-"'?'\‘Wm'h“rl"'l""“‘I-A'I'I"I‘l"'.".‘.*-w-w-i’

Scattered Intensity of a Wave Propagating ... Ma, Varadan & Varadan

PP N

finite sum, though "N", the number of scatterers, can be fairly large. The computation of V
becomes impractical even for a moderate N and in most cases impossible. In terms of an

appropriate probability distribution function and the conditional configuration average, Eq. (3) can

be expressed in the following integral form

= 42 5. dr )
vV = no,[ < |uJ| 2j er i
* i
- "02 H <up >k < uj >j drk drj 4)
where ng, is the number density (ny= N/V), < >; and < >k are conditional configuration

averages holding the positions of the j-th and both the j-th and k-th scatterers fixed, and g(rjk) is

B dndd i

the pair correlation function which is called the radial distribution function for the case of spherical
scatterers. Equation (4) is an exact expression for the incoherent intensity V. Even if the the number
density and pair statistics are known, unless the conditional averages appearing in the integrand are ]
known the integral cannot be evaluated. We also note that this expression can be used to calculate
the intcnsit); of the field scattered by a random rough surface provided the intcgmﬁon variables rj,

rj, Tk etc arc confined to the rough surface. 14

For reguiar distributions, i.e., scatterer at fixed positions, there is no incoherent scattering (V

At e . Se S

= 0) due to the fact that the averaging process is not required. If the scatterer locations are random
and independent of one another, only the first term on the RHS of Eq. (4) remains. T};is is the
single scattering approximation to the intensity. Otherwise, in addition to incoherent single
scattering, a relatively coherent intensity appears as the contribution of the second term grows. As
the concentration of scatterers increases a local order is introduced in the near field of the scatterers
since the particles can only be packed in a limited number of ways. In order to proceed further with
the computation of the incoherent intensity as stated in Eq. (4), we need expressions for <up>;
<|uj12>; and <ukuj*>. The Distorted Born Approximation which is discussed next avoids further

analysis by making straight forward approximations to the first two terms of Eq. (4).

{
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- II1. Distorted Born Approximation ( DBA )
> In order to calculate the incoherent intensity V from Eq. (4) an approximation needs to be
) made for < lujl2 >j as well as for < ukuj* >k which are both unknown. If we consider only first
L ) order scattering, we can use the distorted Born approximation as follows:
.l‘_ * _ * (5)
. < UKUj >_]k =< uk >k< Uj >j .
o This approximation was used by Twersky 15 in solving the rough surface scattering problems and
has subsequently been used by several other authors. Using Eq. (5), in the distorted Bomn
-~
Iy approximation, Eq. (4) can thus be written as
x*
- V = nof<uj>j<uj >jdrj
o>, *
» + 02 I <uye sy <" > g - 11 dry dry. )

Equation (6) represents the incoherent intensity in the DBA. Its source is the coherent field,

<up>;j, Later we show that the average scattered field < uj >4 is related to the average exciting field

when we neglect thé_ field fluctuations in the field exciting a scatterer. Equation (6) tells us that the }C
second term has a contribution to the intensity whenever the i-th and j-th scatterers are close to eactt _
other (position dependence), otherwise the contribution can be neglected (for small concentration, i
g(rjk) = 1). Equation (6) is a deterministic equation since only the average exciting field is involved T
and the calculation is straight forward for spherical scatterers, by using tabulated values of the pair ;;
correlation function. However, attention should be paid to the implementation of the equation since Ef;
the integrals in Eq. (6) depend upon the receiver position through <U;>5. For line-uf-sight ?f
propagation, the receiver can be piaced either in the scattering medium or outside the medium and :
S

Y
Fd

the axis of the receiver may not be parallel to the propagation direction (see Fig. 1). Furthermore, in

ls
)

order to compare with real measurements, the calculated incoherent intensity, must take into
account the characteristics of the transmitter and the receiver and the spreading factor. In other
words, the beam patterns of the transmitter and the receiver, especially for off-forward scattering,

must be built into the equation which makes the calculation a little more complicated. 16

- P
ST e

T
7~

L,

In general, using the distorted Born approximation,the incoherent intensity in the far field is
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. directly proportional to:

i Vo= {IglARng/&n2} 1+ nof[g(x)~1]exptigex) dx] (62)
where 1, is the incident wave intensity, |A| the modified bistatic scattering amplitude (by this we
5 refer to the scattered amplitude when the excitation is the coherent field), g(x) is the pair correlation
; function, x = rj- ry, and q = Kkj — kr; where K is the effective wavenumber, k the unit vector
\ along the incident wave direction, k the wavenumber of the host medium, r the unit vector in the
— direction of observation.

1‘ : In the integral of Eq. (6a), we find that if the concentration of scatterers is small, the pair
- correlation function g(x) is independent of x and equals unity, therefore the second term on the
-

RHS of Eq. (6a) simply vanishes and only single scattering terms remain. If g(x) = 1, the
incoherent intensity is comprised of single scattering contributions from each scatterer plus multiple
scattering effects. Only if ng = 0, i.e. no scatterers are present in the medium, the incoherent

intensity V is zero and the total intensity is just the incident wave intensity if the medium itself is

lossless.

LY

The other extreme is when the whole medium is occupied by scatterers, the incoherent

intensity again vanishes. This implies that one composite medium (two phase medium) has been

AL

converted to a single phase homogeneous medium, therefore no scattering occurs. This can be most

E—.ﬂ
Z'a
easily explained by considering the low frequency limit, i.e q*x << 1. In this case, Lj

exp(igx ) o< 1 and 1+ ng J [g(x) - 1]dx = (1 = )4/ (1 + 2¢)2 o

E ' which is the statistical-mechanics packing factor for spherical scatterers distributed in three
i dimensional space. The volume fraction ¢ (= n047ta3/3 for spherical scatterers with radii a) is unity ;t\‘
and the structure factor vanishes so does the incoherent intensity. When the volume fraction is .

between O and 1, the incoherent intensity is proportional to c(1 - c)4/(1 + 2c)2, in the long "

wavelength limit. j

st

A. The Coherent or Average Scattered Field <u > L ~

To compute the intensity in the DBA, or to proceed further with the analysis of Eq. (4), we “E

o
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need an expression for the coherent field. For a single scatterer, the scattered field from the j-th \
scatterer can be expressed as

uj =S h ¥y ™ |
where fnj are the scattered field coefficients and ‘Pnj the outgoing functions (Hankel functions).
The scattered field coefficients fnj and the exciting field coefficients anj are related through the T
matrix :17 .

fi=ZT dod. ¢))
Substituting Eq. (8) into Eq. (7) and taking the conditional configuration average, we have

<u>j =ZX<T, Ja.nj‘{‘n'j>j. 9)
Further, to simplify the computation, we assume the shape, size, and physical properties of all the
scatterers are independent of their-positions. In such a case, Eq. (9) can be written as

. <u > =X XT J<0.nJ>‘PJ . (10)

where the exciting ﬁeld coefficients of the j-th scatterer can be shown to be>

aj=a)+ZET opp(ry - j)Tn'n"k oK. | (11)

In Eq.(11), anj are the incident field coefficients of the j-th scatterer and G is the

translation matrix for spherical wave functions. Although anj are, in general, unknown for a
random distribution of scatterers, their conditional average < anj >j (average exciting field

coefficients of the j-th scatterer whose position is fixed) are assumed to have the following formd

\'-(
w2 <oy > = X, exp (i Kko-rj ) (12)
- which states that for an incident plane wave field, the average exciting field propagates with a new
propagation constant K along the incident wave direction k. The above form results directly as a
result of the assumption that the average medium is a statistically homogenous medium described
o by different properties but that preserves the plane wave nature of the original incident plane wave.
;‘ The new propagation constant K is complex and frequency dependent and can be obtained by
) solving the following dispersion equation5
. ) .
"' < anJ >j = an-] +2 XX N, I O'nn'(l'k J)T oK g(rjk) < an"k >k dl"k (13)
7
k.
----- PO T ORI AL S ¢ R S S A
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in which the Quasi-crystalline approximation (QCA),18 ie.,
<ok >y = <oy, (14)
has been introduced.
IV. Improvements to the Distorted Born Approximation
We can now proceed with further evaluation of the first and second terms of Eq. (4) which
involve <uu;* >

13 7
of the field scattered by one scatterer in the presence of other scatterers and the correlation of the

and < “k“j* >ik: These are, respectively, the ensemble average of the intensity

fields scattered by two distinct scatterers. These can also be expressed in terms of the T-matrix,

exciting field coefficients and outgoing functions, as follows:

< uJuJ >j= PIDID Py .,J Ty ---j *< o.n-.j o.n...j* > ¥ j‘PnJ*, (15)
<" > = ZEE BTy K Toped * < oK aped® > wkowpd™, (16)

If we do not use the distorted Born approximation and instead Eq. (11) is substituted into -

Egs. (15) and(16) for o, and for sunphcuyallthe obvious subscnptsareonuttcd to obtain
C<od o >—<(aJ+chTk k)(aJ+E,c TMam)* >
A’*j maj
=ala ral (<l > - al") + al* [< o > - a)
+Z F o T 0y T <ok am *> 17
Therefore, '
calol’>i = alcal®sival <ol - ol

/
+}r2 f ik TK O'jk*Tk* <ok ak*>jk p(r;;r)dry
sm

+ E’*%n H of8 k T m*Tm* < ak am*>jkm p(r;; Mefm ) dl‘k dl'm (18)

We are now ready to proceed with a similar evaluation of < ukuj* >ik: Using Eq. (11), we

can write

e N
\ \J-\.r,h-‘*w,_r
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kog* k & P i m om \*
<aX ol >jk=<(a +,02=10ka aP)(aJ+mf':IojmT o't) >jk
Pk m¥y
= aKaj* + ak [< aj* >jk - aj*] + aj* [< ak>jk - aj]
+ 'L 0, TPojy T < o o *>y (19

where the last term can be further expressed as the sum of the following

pID Okp Tpojm*Tm* <aP oM *>jk = Of; ojk*Tj TK* < o k™ >ik
+3] kp ojp*TP TP* < oPoP* >ikp Pty 5 rp)drp
+ I [0y
+ X Okp O'jk*TP TK* < aPok™ >ikp p(rk,rj : rp)drp

Hi kK
TITP” < JaP >ikp p(rk,rj : rp) drp

+ T Okp cjm*'rp Tm* ¢ gPem* >ikpm p(rk,rj ; rp,rm) drpdrm. (20)

Equations (18) and (20) can be substituted into Egs. (15) and (16) and finally into Eq. (4) to yield
an expression for the incoherent intensity which can be evaluated in principle provided complete
statistics are known. It can be séen that Eqs. (18) and (20) involve correlation functions ‘of all
orders. In pracﬁée, this is not known for any system unless approximations are rr{ade for the
correlation functions or the statistics are Gaussian. In this case, higher order correlation functions
can be written in terms of products of lower order ones or the higher order statistics can be
completely neglected. This is pursued in the next section.
V. Corrections to the DBA Keeping only Two Point Statistics
A. Ladder Approximation

In order to carry out the intensity computation, we need to make approximations based on
the statistics we considered for the coherent field. Up to this point, statistics higher than the pair
correlation function has not been employed in the truncation of the hierarchy of equations for the
coherent field.d Therefore, we neglect terms involving p( r; ; Fy.Fp, ) which is the conditional
probability of finding the scatterer at rj with respect to a pair of scatterers at ry and r,. Further. in
the spirit of the QCA we assume that

<(1k ak*>jk = <(1k ak*>k. (21




Rl Bl A Al N iy -'.'-'-'-"."W"'q'"-"&'L"‘T'T"-‘"""i'v"""-’-j

L QEN

Scattered Intensity of a Wave Propagaling ... Ma, Varadan & Varadan

] Equation (18) can then be written as
' <> =<d> <,

+ng [ oy o ka < ak ok"> g(rj ) dry - (22)
o If we keep iterating < ok ak*>k and use Eq. (21) as an approximation in Eq. (22), we obtain

< GJ Gj*>j =< 0) >j < Gj* >j + Ny Iojk Tk ojk*Tk* < Q.k >k < G.k*>k g( l‘jk ) drk
N, 2 ” O"k Tk ij*Tk* O'km M O’km*Tm* <qm >m < am*>m g( "jk )g( M'em ) drkdrm
+ Ny 3 J'H kaO'k Tk kaTmO'k_m Tm X

= X Omp TP Omp *TP* < oP >p < oP* >p g( Fik ) 8( T ) 8 Fmp ) drkdrmdrp
+ ... = Distorted Born + Higher Order Correction . . (23)
r‘ Equation (23) when substituted into Eq. (15) and then in Eq. (4) will enable us to compute the first

term of the incoherent intensity V to accuracy higher than the DBA, but involves only the pair

ey

correlation function. This is explained further when the results in Table I are discussed. In Eq.

(21), an approximation analogous to the QCA for the exciting field has been made for the exciting

L 2

field intensity.
The above equation is analogous to the equation associated with a continuous random
medium with fluctuations of the physical properties whose distributions are Gaussian. In this case,

u all correlation functions appearing in the averaging process can be written in terms of the two point

,n

correlation function.* If we use diagrammatic techniques, which were first introduced by Feynman

'3

iy in quantum mechanics,® and were later, employed in the study of wave propagation in random
. media by Bourrct.19 Furutsu,?-O Tatarski2! and Frisch,4 it can be shown that Eq. (23) is
iy equivalent to the ladder approximation (neglect the cross terms, i.e. 1-2' and 2-1', in Eq. (24a)) of
- the Bethe-Salpeter equation:
- ; SR "o e )
<Ufr, rO)U (r', ro Y> = <U(r, r0)><U (', ro)> + ”” drldrzdrl drzG(r, rpx
,_- < G*(r', rl')I(rl, ry. ry,ry) <U(ry, rO)U*(rz', ro)> (24
' The above equation can also be represented diagrammatically as
v
-
10
. ‘
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E‘ r . 1 2 ro
| 4 Itr,r;re,ry 24a
¥ ———— — {iL_z_l_E.)\_J____ (242)
‘ ] ) ] +
r 1 2 ro
» where (r, r') and ( rofo) are the vectors associated with the incident and observation positions
: respectively. The vectors ry, rp, ry' and ry' denote position vectors of the scatterers 1, 2, 1' and
2 respectively and G( ) is the propagation function. In most cases it is difficult to calculate an
. explicit expression for the intensity operator I(ry, r; ry', r3"). In order to evaluate the correlation
S function of the field, it is necessary to resort to approximate representations. The ladder
) approximation to the intensity operator based on Eq. (23) is
. 3 3 J & X ) k m m
- ) e KA > <«—o ———-;:(——-— <X i, <———7———,o ——Oe——KX 2
L d J ! {
+ : + i +e0e (29)
P o | »
6——-—;<:<-—-< 5 € —0— — P& — <X i_ e-—o—-—oc:‘-’?e-_-@( >

We note that only the first term of Eq. (4) which involves only <|u'j|2> contributes to the ladder
approximation.

The so called "dressed" diagrams shown above have a multiple scattering interpretation and
] . in this approximation, the coherent exciting field is the original source of the final incoherent
‘ radiation. The upper (or lower) line corresponds to a wave, scattered by the m-th scatterer which is
excited by the coherent field, propagating in an effective medium, characterized by the effective

wavenumber K, to the k-th scatterer which is again scattered and propagates to the next scatterer,

SR
y ~ and so on. The curly and dash lines joining two scatterers represent the dressed propagators which
i
‘T consist of the translation operator G and the pair correlation function. Each double diagram in Eq.
o x': -
s (25) is the product ( scalar or vector or tensor product depending upon the nature of the problem) of

" the operator corresponding to the upper line with its complex conjugate corresponding to the lower

line. Therefore, different order ladder approximations of the incoherent intensity rely on the number

- of sequential scattcring pracesses considered in the calculation. Without truncation of the series.
)
)
L) .f)
: 1 11
-
1

|
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the calculation cannot be done. The truncation depends critically on the concentration of scatterers,
the propagation distance or the thickness of the scattering medium, physical properties of the
scatterers, the incident wavelength, etc.
B. Cyclic Diagrams
It will be now shown that the so called cyclic diagrams involving back and forth scattering
between a pair of scatterers results from the second term of Eq. (4). In order to carry out the
computation, higher order statistics, i.e. p(rk,rj p) and p(r),r i rm), are neglected in
Eq. (19). Finally, we have, after some manipulations in iterating < o oK >jk ,
<ok af* >k =< ok >k < o* >j + Oj ojk*Tj TK* < o > < ok* >k
+ O; .O'jk*Tj TK* ij* O'jka T* < od* > < ok >k
+ ..
= Distorted Bom + Higher Order Correction . (26)

After subsntunng Eq. (26) into Eq. (16) and then in Eq (4), we can dxagrammatxcally write the

mcohcrent intensity V as: x

— By o f S X <«
« | g P K
|
+ | + i @
).r ; ! ¥
€= be -y e o<l e > — — — ¢l >
) J

In the above equation, one sees that beyond the distorted Born approximation the cross terms
imply that back and forth multiple scattering processes between a pair of scatterers. This is over and
beyond the ladder approximation to the intensity. It may be mentioned that although excellent
agreement was obtained between theory and experiment when similar terms were neglected in the
computation of the cohe;cnt field,d this may not be the case for the intensity calculation. Recently,
an interesting enhanced backscattering phenomenon has been observed®22:23 and some analytical
work was tried to explain this using cyclic scattering and point scatterers. 10 However, the

experimental observations deal with scatterers large when compared with the incident wavelength,

12
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and therefore a detailed computation based on anisotropic scattering for finite size scatterers is
essential. From the published experimental results it is not possible to observe backscattering
enhancement when the scatterer size is small compared to the wavelength. It is also advisable to
use the T-matrix for a pair of scatterers as mentioned in our earlier work. 1! In fact the so called
cyclic terms can all be summed if one replaces the infinite series in Eq. (27) with the T-matrix of a

pair of scatterers as given by.24 Equation (27) may hence be written diagrammatically as

P K
< - <KX
¥k
T (28)
%
- — - e — =X 3

where TJK , the t‘wo scatterer T- matrix has the following form
T = R(ro JT [ 1-0(rj) T8 o(re) TH "L (14 o(rj) TER(rye) 1R(= 1)
+R(ry) TK[1- o(ry;) T o(r) K-l 1+ o(r;) T R IRE-15)  (29)
where R(r ) is the regular part of t.hc translation matrix o( ro), Fk=Tj- rk and ro = (rj + /2.
We are now in a position to write an expression for V as given in Eq. (4) which is exact if
only two point correlations are retained. We emphasize that thjs is different from making
approximations to higher order statistics such as Kirkwood's superposition approximation for the
three point correlation function. To this end we substitute Egs. (23) and ( 26) in Egs. (15) and (16)
and the last two in Eq. (4) to yield ’
V=n,Z f[‘{’jTj<aj>j][‘PjTj<aj>j I dr,
002 T T oy TF < o oy 1[99 T oy T < ok >y 1550 dr diry
w03 Z [T ¥ Top X oy T <> ) x
x [V T Ok Tk Oxm TM < aM > * 8(rjk) 8(km) drj dry dr,

+ ... ( ladder diagrams)

gl EI LR TR < ooy 1190 T <l 551" [grp) - 1] dr dry
ot EN WK T: 0y T < ol 5 ) [ ¥ T oy T < ok oy 17 gty i iy
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+ ng 2 ZII[‘Pkack- Ti c-ka<o.k > 1%
x [ViTo kaO'kJTJ<orJ>] g(rjy) dr; dry
. (cyclic diagrams ) (30)
Each term of the two series in Eq. (30) represents a certain order of scattering. For the same order

of scattering, the cyclic terms are proportional to a higher power in the number density. Thus at low

concentrations cyclic terms contribute less than the ladder terms to the the same order of scattering.

Equation (30) has been used in the computations presented in the next section.
VI. Numerical Results and Discussion

To check the validity of our formalism, we compared our incoherent intensity calculations
with the microwave experiments conducted by Beard et al.16 The transmitted intensity was
calculated using the DBA as given in Eq. (6) where 6 = 0° represents the forward direction. This
calculation is based on the experimental set-up (see Fig. 1) which consists of a slab region
styrofqam container, for various concentrations of scatterers at the ﬁxéd frequency. For the case ka
= 20.8 for tenuous scatterers with relative index of refraction 1.016 the computedh results match
very well with measurements (see Fig. 2). Similar computations were also performed for
off-forward scattering and a good comparison is again presented in Fig. 3.

The contribution of different orders of scattering is also investigated for the propagation of an
electromagnetic wave through randomly distributed spherical ice particles (see Fig. 4). In this
calculation, the intensity in the far field of the scattering medium is computed and is normalized
with respect to the number dcn§ity, receiving area and the distance D traveled by the wave in order
to consider the general nature of the problem without reference to specific measurements. Table I
gives the magnitudes of the different order scattered incoherent intensities in the forward direction
for two different concentrations at two different frequencies. The distorted Born approximation
uses only 1st (A) and 1st (B) terms described in the remark of Table I. Although the calculation
converges quite rapidly for this scattering medium at small and moderate frequencies (ka =0.1 and

1.0, respectively), no conclusion can be drawn when high frequencies and different scattering

’
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media are considered. Higher order terms in the intensity calculation not only increase the amount
of CPU time but also require knowledge of higher order statistics for densely distributed finite size
scatterers.

If the scatterers are not spherical in shape, the calculation of the scattered intensity for a dense
distrivution of nonspherical scatterers, using spherical statistics, may deviate from measurement s
by a considerable amount unless a correct pair correlation function, is employed in the calculation.
To show the effect of pair statistics on the intensity calculation, we have picked values of the
effective wavenumber from a previous investigation13 and used them to compute the intensity and
show the results in Figs 5 and 6. The geometry of this problem is, again, described by Fig. 4. But
the scatterers are either oblate or prolate spheroids and the rotational 'axis symmetry for all scatterers
is parallel to the direction of the incident wave. The details in obtaining the appropriate pair
correlation function using Monte Carlo techniques have been discussed by the authors. 13

As for the backscattered intensity, we have included the T-matrix of a pair of scatterers which
takes into account all the so called ‘cyclic’ tcm§ and considers multiple scattering up to the second
order for the calculation of the incoherent intensity . Among three similar optical
experimcntss’zz’23 of laser light scattered by densely distributed latex particles in distilled water,
Albada’s measurements are, in our opinion, of the best quality for comparison purposes. The
reason is partly that the receiver used has a very small field of view and, hence, gives a much better
angular resolution. The widths and the magnitudes of the backscattered intensity peak of our

computations compare favorably with those of Albada's experiments (see Fig. 7) for three different

number densities which have been converted to the corresponding volume fractions in our intensity

calculation. However, due to the truncation of the orders of scattering due to the tremendous

amount of CPU time required, we did not obtain a full match.
In a previous paper,5 the multiple scattered intensity was represented intuitively using
diagrams which included possibly all the complicated multiple scattering processes, whereas in the

present case, one can see that it also involves approximating higher order statistics in terms of the
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pair statistics. Without a priori knowledge of higher order statistics, one may be able to make
various approximations and, as a result, different diagrams can be generated but these nonunique
subsets of the intensity operator of the Bethe-Salpeter equation. As for the validity of the
approximations ~ can higher order statistics be satisfactorily approximated by lower order statistics
or should they be neglected - is still an open question.
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( Table I Comparison of Orders of Scattering
( ‘
N (9=0°,ka=0.1) \\
|
¢ =0.05 ¢ =020 |
S Order  Normalized Intensity Order Normalized Intensity
® | Ist(A)  0.1796x 106 Ist (A) 0.1839 x 10
B) -0.6050x 1077 (B) ~0.1469 x 100
] 2nd (A)  0.7689 x 10°13 2nd (A) 0.1076 x 10°13
-, B) 07544 x 10°13 (B) 0.1062 x 10°13
o (6=0°ka=1.0)
¢ =005 c=020
. Order Normalized Intensity Order Normalized Intensity
1st (A) 0.3009 Ist (A) 0.2999
®B) -0.1016 (B) -0.2393
2nd (A)  0.8369 x 10-3 2nd (A) 0.1123 x 10!
" B)  0.8665 x 10-3 (B) 0.1160 x 10°!
3rd (A)  0.1419x 10”7 3rd (A) 0.6044 x 1073
N (B)  0.4653 x 107 (B) 0.7246 x 1073
7 ath (A)  0.6054x10"10 ath (A) 0.3428 x 104
(B) 02777x10°6 (B) 0.4759 x 104
&
- Remark:
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Geometry of scattering from layered media.
(In Beard's experiment of= 6, 8= 3°
= 69.9 cm, R = 264 cm, D = 25.4 cm)

Transmitted incoherent intensity vs. concentration.

Off-forward scattering of incoherent intensity for different
concentrations.

Geometry of scattering from a volume of scatterers.

Fig. 5 Normalized incoherent intensity of EM wave scattered by oblate
ice spheroilds in free space.
Fig. 6 Normalized incoherent intensity of EM wave scattered by prolate
ice spheroids in free space.
Fig. 7 Backscattered intensity for latex spheres in water (0 mrad is
the backscattering direction).
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